Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Anesth Analg ; 132(1): 2-14, 2021 01.
Article in English | MEDLINE | ID: covidwho-2140282

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic created an extraordinary demand for N95 and similarly rated filtering facepiece respirators (FFR) that remains unmet due to limited stock, production constraints, and logistics. Interest in decontamination and reuse of FFR, a product class designed for single use in health care settings, has undergone a parallel surge due to shortages. A worthwhile decontamination method must provide effective inactivation of the targeted pathogen(s), and preserve particle filtration, mask fit, and safety for a subsequent user. This discussion reviews the background of the current shortage, classification, structure, and functional aspects of FFR, and potentially effective decontamination methods along with reference websites for those seeking updated information and guidance. The most promising techniques utilize heat, hydrogen peroxide, microwave-generated steam, or ultraviolet light. Many require special or repurposed equipment and a detailed operational roadmap specific to each setting. While limited, research is growing. There is significant variation between models with regard to the ability to withstand decontamination yet remain protective. The number of times an individual respirator can be reused is often limited by its ability to maintain a tight fit after multiple uses rather than by the decontamination method itself. There is no single solution for all settings; each individual or institution must choose according to their need, capability, and available resources. As the current pandemic is expected to continue for months to years, and the possibility of future airborne biologic threats persists, the need for plentiful, effective respiratory protection is stimulating research and innovation.


Subject(s)
COVID-19/prevention & control , Decontamination , Equipment Contamination , Equipment Reuse , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Inhalation Exposure/prevention & control , N95 Respirators/virology , Occupational Exposure/prevention & control , COVID-19/transmission , Humans , Inhalation Exposure/adverse effects , Occupational Exposure/adverse effects , Occupational Health , Risk Assessment , Risk Factors
2.
Infect Control Hosp Epidemiol ; 42(1): 75-83, 2021 01.
Article in English | MEDLINE | ID: covidwho-2096434

ABSTRACT

BACKGROUND: Shortages of personal protective equipment during the coronavirus disease 2019 (COVID-19) pandemic have led to the extended use or reuse of single-use respirators and surgical masks by frontline healthcare workers. The evidence base underpinning such practices warrants examination. OBJECTIVES: To synthesize current guidance and systematic review evidence on extended use, reuse, or reprocessing of single-use surgical masks or filtering face-piece respirators. DATA SOURCES: We used the World Health Organization, the European Centre for Disease Prevention and Control, the US Centers for Disease Control and Prevention, and Public Health England websites to identify guidance. We used Medline, PubMed, Epistemonikos, Cochrane Database, and preprint servers for systematic reviews. METHODS: Two reviewers conducted screening and data extraction. The quality of included systematic reviews was appraised using AMSTAR-2. Findings were narratively synthesized. RESULTS: In total, 6 guidance documents were identified. Levels of detail and consistency across documents varied. They included 4 high-quality systematic reviews: 3 focused on reprocessing (decontamination) of N95 respirators and 1 focused on reprocessing of surgical masks. Vaporized hydrogen peroxide and ultraviolet germicidal irradiation were highlighted as the most promising reprocessing methods, but evidence on the relative efficacy and safety of different methods was limited. We found no well-established methods for reprocessing respirators at scale. CONCLUSIONS: Evidence on the impact of extended use and reuse of surgical masks and respirators is limited, and gaps and inconsistencies exist in current guidance. Where extended use or reuse is being practiced, healthcare organizations should ensure that policies and systems are in place to ensure these practices are carried out safely and in line with available guidance.


Subject(s)
COVID-19 , Equipment Reuse/standards , Infection Control/instrumentation , Masks/virology , N95 Respirators/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Infection Control/methods , Practice Guidelines as Topic , Risk Management/methods , Risk Management/standards
3.
J Occup Environ Hyg ; 19(10-11): 663-675, 2022.
Article in English | MEDLINE | ID: covidwho-2028921

ABSTRACT

The COVID-19 pandemic has affected the world and caused a supply shortage of personal protection equipment, especially filtering facepiece respirators (FFP). This has increased the risk of many healthcare workers contracting SARS-CoV-2. Various strategies have been assessed to tackle these supply issues. In critical shortage scenarios, reusing single-use-designed respirators may be required. Thus, an easily applicable and reliable FFP2 (or alike) respirator decontamination method, allowing safe re-use of FFP2 respirators by healthcare personnel, has been developed and is presented in this study. A potent and gentle aerosolized hydrogen peroxide (12% wt) method was applied over 4 hr to decontaminate various brands of FFP2 respirators within a small common room, followed by adequate aeration and storage overnight. The microbial efficacy was tested on unused respirator pieces using spores of Geobacillus stearothermophilus. Further, decontamination effectiveness was tested on used respirators after one 12-hr shift by swabbing before and after the decontamination. The effects of up to ten decontamination cycles on the respirators' functionality were evaluated using material properties, the structural integrity of the respirators, and fit tests with subjects. The suggested H2O2 decontamination procedure was proven to be (a) sufficiently potent (no microbial recovery, total inactivation of biological indicators as well as spore inoculum on critical respirator surfaces), (b) gentle as no significant damage to the respirator structural integrity and acceptable fit factors were observed, and (c) safe as no H2O2 residue were detected after the defined aeration and storage. Thus, this easy-to-implement and scalable method could overcome another severe respirator shortage, providing enough flexibility to draft safe, effective, and logistically simple crisis plans. However, as highlighted in this study, due to the wealth of design and material used in different models and brands of respirators, the decontamination process should be validated for each FFP respirator model before its field implementation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Ventilators, Mechanical
4.
mSphere ; 7(5): e0030322, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2019746

ABSTRACT

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Subject(s)
COVID-19 , N95 Respirators , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hydrogen Peroxide/pharmacology , SARS-CoV-2 , Virus Inactivation , Decontamination/methods , Feasibility Studies , RNA, Viral , Equipment Reuse
5.
Am J Infect Control ; 50(8): 857-862, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000224

ABSTRACT

BACKGROUND: Global shortage of personal protective equipment (PPE), as consequence of the COVID-19 global pandemic, has unmasked significant resource inequities prompting efforts to develop methods for safe PPE decontamination for reuse. The World Health Organization (WHO) in their Rational Use of PPE bulletin cited the use of a photodynamic dye, methylene blue, and light exposure as a viable option for N95 respirator decontamination. Because WHO noted that methylene blue (MB) would be applied to surfaces through which health care workers breathe, we hypothesized that little to no MB will be detectable by spectroscopy when the PPE is subjected to MB at supraphysiologic airflow rates. METHODS: A panel of N95 respirators, medical masks, and cloth masks were sprayed with 5 cycles of 1,000 uM MB solution. Mask coupons were subjected to the equivalent of 120 L/min of 100% humidified air flow. Effluent gas was trapped in an aqueous solution and the resultant fluid was sampled for MB absorbance with a level of detection of 0.004 mg/m3. RESULTS: No detectable MB was identified for any mask using Ultraviolet-Visible spectroscopy. CONCLUSIONS: At 500-fold the amount of MB applied to N95 respirators and medical masks as were used for the decontamination study cited in the WHO Rational Use of PPE bulletin, no detectable MB was observed, thus providing safety evidence for the use of methylene blue and light exposure for mask decontamination.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Methylene Blue , N95 Respirators
6.
Am J Infect Control ; 50(8): 863-870, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000222

ABSTRACT

BACKGROUND: The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. METHODS: We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. RESULTS: Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. CONCLUSIONS: These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Middle East Respiratory Syndrome Coronavirus , Nipah Virus , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Hemorrhagic Fever, Ebola/prevention & control , Humans , Methylene Blue/pharmacology , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , Ventilators, Mechanical
7.
Am J Infect Control ; 50(8): 871-877, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000219

ABSTRACT

BACKGROUND: In the context of the SARS-CoV-2 pandemic, reuse of personal protective equipment, specifically that of medical face coverings, has been recommended. The reuse of these typically single-use only items necessitates procedures to inactivate contaminating human respiratory and gastrointestinal pathogens. We previously demonstrated decontamination of surgical masks and respirators contaminated with infectious SARS-CoV-2 and various animal coronaviruses via low concentration- and short exposure methylene blue photochemical treatment (10 µM methylene blue, 30 minutes of 12,500-lux red light or 50,000 lux white light exposure). METHODS: Here, we describe the adaptation of this protocol to the decontamination of a more resistant, non-enveloped gastrointestinal virus and demonstrate efficient photodynamic inactivation of murine norovirus, a human norovirus surrogate. RESULTS: Methylene blue photochemical treatment (100 µM methylene blue, 30 minutes of 12,500-lux red light exposure) of murine norovirus-contaminated masks reduced infectious viral titers by over four orders of magnitude on surgical mask surfaces. DISCUSSION AND CONCLUSIONS: Inactivation of a norovirus, the most difficult to inactivate of the respiratory and gastrointestinal human viruses, can predict the inactivation of any less resistant viral mask contaminant. The protocol developed here thus solidifies the position of methylene blue photochemical decontamination as an important tool in the package of practical pandemic preparedness.


Subject(s)
Decontamination , Masks , Methylene Blue , Norovirus , Animals , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Masks/virology , Methylene Blue/toxicity , Mice , SARS-CoV-2
8.
J Biophotonics ; 15(10): e202200068, 2022 10.
Article in English | MEDLINE | ID: covidwho-1971275

ABSTRACT

The spread of SARS-CoV-2 has resulted in the shortage of filtering facepiece respirators (FFRs). As a result, the use of ultraviolet (UV) irradiation for disinfection and reuse of FFRs has been the topic of much investigation. In this article, a mathematical model is developed based on Kubelka's theory to determine light transmission in multilayer materials, such as N95 masks. Using this model, the predicted UV transmittance and absorbance of a N95 mask layers were found to be in close agreement with the experimental values. In addition, when the mask was exposed to UV equally from both surfaces, the estimated minimum UV irradiance inside the N95 mask was 14.5% of the incident irradiance, suggesting a significant degree of light penetration. The proposed model provides a simple and practical methodology for the design and use of UV decontamination equipment for FFRs and other multilayer materials.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Ultraviolet Rays , Ventilators, Mechanical
9.
Infect Control Hosp Epidemiol ; 43(6): 764-769, 2022 06.
Article in English | MEDLINE | ID: covidwho-1890039

ABSTRACT

OBJECTIVE: To assess the potential for contamination of personnel, patients, and the environment during use of contaminated N95 respirators and to compare the effectiveness of interventions to reduce contamination. DESIGN: Simulation study of patient care interactions using N95 respirators contaminated with a higher and lower inocula of the benign virus bacteriophage MS2. METHODS: In total, 12 healthcare personnel performed 3 standardized examinations of mannequins including (1) control with suboptimal respirator handling technique, (2) improved technique with glove change after each N95 contact, and (3) control with 1-minute ultraviolet-C light (UV-C) treatment prior to donning. The order of the examinations was randomized within each subject. The frequencies of contamination were compared among groups. Observations and simulations with fluorescent lotion were used to assess routes of transfer leading to contamination. RESULTS: With suboptimal respirator handling technique, bacteriophage MS2 was frequently transferred to the participants, mannequin, and environmental surfaces and fomites. Improved technique resulted in significantly reduced transfer of MS2 in the higher inoculum simulations (P < .01), whereas UV-C treatment reduced transfer in both the higher- and lower-inoculum simulations (P < .01). Observations and simulations with fluorescent lotion demonstrated multiple potential routes of transfer to participants, mannequin, and surfaces, including both direct contact with the contaminated respirator and indirect contact via contaminated gloves. CONCLUSION: Reuse of contaminated N95 respirators can result in contamination of personnel and the environment even when correct technique is used. Decontamination technologies, such as UV-C, could reduce the risk for transmission.


Subject(s)
COVID-19 , N95 Respirators , Decontamination/methods , Equipment Reuse , Fomites , Humans , Levivirus , SARS-CoV-2
10.
Sci Rep ; 12(1): 4191, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799570

ABSTRACT

Filtering facepiece respirators (FFRs) provide effective protection against diseases spread through airborne infectious droplets and particles. The widespread use of FFRs during the COVID-19 pandemic has not only led to supply shortages, but the disposal of single-use facemasks also threatens the environment with a new kind of plastic pollution. While limited reuse of filtering facepiece respirators has been permitted as a crisis capacity strategy, there are currently no standard test methods available for decontamination before their repeated use. The decontamination of respirators can compromise the structural and functional integrity by reducing the filtration efficiency and breathability. Digital segmentation of X-ray microcomputed tomography (microCT) scans of the meltblown nonwoven layers of a specific N95 respirator model (Venus-4400) after treatment with one and five cycles of liquid hydrogen peroxide, ultraviolet radiation, moist heat, and aqueous soap solution enabled us to perform filtration simulations of decontaminated respirators. The computed filtration efficiencies for 0.3 µm particles agreed well with experimental measurements, and the distribution of particle penetration depths was correlated with the structural changes resulting from decontamination. The combination of X-ray microCT imaging with numerical simulations thus provides a strategy for quantitative evaluation of the effectiveness of decontamination treatments for a specific respirator model.


Subject(s)
Decontamination/methods , Masks , COVID-19/prevention & control , COVID-19/virology , Detergents/chemistry , Equipment Reuse , Filtration , Humans , Hydrogen Peroxide/pharmacology , Masks/virology , Models, Theoretical , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Ultraviolet Rays , X-Ray Microtomography
11.
J Hosp Infect ; 122: 168-172, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1729912

ABSTRACT

BACKGROUND: The global COVID-19 pandemic, accompanied by spikes in the number of patients in hospitals, required substantial amounts of respiratory protective devices (respirators), thereby causing shortages. Disinfection of used respirators by applying ultraviolet C (UVC) light may enable safe reuse, reducing shortages. AIM: To determine whether UVC disinfection is applicable to enable repeated safe reuse of respirators. METHODS: The UVC chamber, equipped with low-pressure mercury discharge lamps emitting at 254 nm, was used to determine the sporicidal and virucidal effects. Respirators challenged with spores and viruses were exposed to various UVC energy levels. Deactivation of the biological agents was studied as well as UVC effects on particle filtration properties and respirator fit. FINDINGS: A 5 log10 reduction of G. thermophilus spore viability by a UVC dose of 1.1 J/cm2 was observed. By simulating spores present in the middle of the respirators, a 5 log10 reduction was achieved at a UVC dose of 10 J/cm2. SARS-CoV-2 viruses were inactivated by 4 log10 upon exposure to 19.5 mJ/cm2 UVC. In case UVC must be transmitted through all layers of the respirators to reach the spores and virus, a reduction of >5 log10 was achieved using a UVC dose of 10 J/cm2. Exposure to a six-times higher UVC dose did not significantly affect the integrity of the fit nor aerosol filtering capacity of the respirator. CONCLUSION: UVC was shown to be a mild and effective way of respirator disinfection allowing for reuse of the UVC-treated respirators.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination , Disinfection , Equipment Reuse , Geobacillus stearothermophilus , Humans , Pandemics , Spores, Bacterial , Ultraviolet Rays , Ventilators, Mechanical
12.
PLoS One ; 17(2): e0262818, 2022.
Article in English | MEDLINE | ID: covidwho-1705625

ABSTRACT

This paper reports a plasma reactive oxygen species (ROS) method for decontamination of PPE (N95 respirators and gowns) using a surface DBD source to meet the increased need of PPE due to the COVID-19 pandemic. A system is presented consisting of a mobile trailer (35 m3) along with several Dielectric barrier discharge sources installed for generating a plasma ROS level to achieve viral decontamination. The plasma ROS treated respirators were evaluated at the CDC NPPTL, and additional PPE specimens and material functionality testing were performed at Texas A&M. The effects of decontamination on the performance of respirators were tested using a modified version of the NIOSH Standard Test Procedure TEB-APR-STP-0059 to determine particulate filtration efficiency. The treated Prestige Ameritech and BYD brand N95 respirators show filtration efficiencies greater than 95% and maintain their integrity. The overall mechanical and functionality tests for plasma ROS treated PPE show no significant variations.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Personal Protective Equipment , Reactive Oxygen Species , Equipment Reuse , Humans , N95 Respirators
13.
Sci Rep ; 12(1): 2445, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684114

ABSTRACT

Surgical masks have become critical for protecting human health against the COVID-19 pandemic, even though their environmental burden is a matter of ongoing debate. This study aimed at shedding light on the environmental impacts of single-use (i.e., MD-Type I) versus reusable (i.e., MD-Type IIR) face masks via a comparative life cycle assessment with a cradle-to-grave system boundary. We adopted a two-level analysis using the ReCiPe (H) method, considering both midpoint and endpoint categories. The results showed that reusable face masks created fewer impacts for most midpoint categories. At the endpoint level, reusable face masks were superior to single-use masks, producing scores of 16.16 and 84.20 MPt, respectively. The main environmental impacts of single-use masks were linked to raw material consumption, energy requirements and waste disposal, while the use phase and raw material consumption made the most significant contribution for reusable type. However, our results showed that lower environmental impacts of reusable face masks strongly depend on the use phase since reusable face masks lost their superior performance when the hand wash scenario was tested. Improvement of mask eco-design emerged as another key factor such as using more sustainable raw materials and designing better waste disposal scenarios could significantly lower the environmental impacts.


Subject(s)
COVID-19/prevention & control , Masks/standards , Personal Protective Equipment/standards , Textiles/standards , COVID-19/epidemiology , COVID-19/virology , Disposable Equipment/standards , Ecosystem , Environment , Equipment Reuse/standards , Humans , Masks/classification , Pandemics/prevention & control , Personal Protective Equipment/classification , Public Health/methods , SARS-CoV-2/physiology , Textiles/classification
14.
J Hazard Mater ; 429: 127709, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1654743

ABSTRACT

Dry heat decontamination has been shown to effectively inactivate viruses without compromising the integrity of delicate personal protective equipment (PPE), allowing safe reuse and helping to alleviate shortages of PPE that have arisen due to COVID-19. Unfortunately, current thermal decontamination guidelines rely on empirical data which are often sparse, limited to a specific virus, and unable to provide fundamental insight into the underlying inactivation reaction. In this work, we experimentally quantified dry heat decontamination of SARS-CoV-2 on disposable masks and validated a model that treats the inactivation reaction as thermal degradation of macromolecules. Furthermore, upon nondimensionalization, all of the experimental data collapse onto a unified curve, revealing that the thermally driven decontamination process exhibits self-similar behavior. Our results show that heating surgical masks to 70 °C for 5 min inactivates over 99.9% of SARS-CoV-2. We also characterized the chemical and physical properties of disposable masks after heat treatment and did not observe degradation. The model presented in this work enables extrapolation of results beyond specific temperatures to provide guidelines for safe PPE decontamination. The modeling framework and self-similar behavior are expected to extend to most viruses-including yet-unencountered novel viruses-while accounting for a range of environmental conditions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Hot Temperature , Humans , Personal Protective Equipment
15.
Am J Infect Control ; 50(2): 217-219, 2022 02.
Article in English | MEDLINE | ID: covidwho-1611566

ABSTRACT

N95 respirators were reprocessed using vaporized hydrogen peroxide to supplement limited supplies during the COVID-19 pandemic. In this study, we found no statistically significant differences in qualitative and quantitative fit or filtration efficiency with reprocessing. Filtration efficiency remained above 95% even at 25 cycles of reprocessing without statistically significant change from cycle 20-25 compared to cycle 0 (P = .10, P = .05, respectively). Vaporous hydrogen peroxide is an effective option to augment N95 respirator supplies.


Subject(s)
COVID-19 , Hydrogen Peroxide , Decontamination , Equipment Reuse , Humans , N95 Respirators , Pandemics , SARS-CoV-2
16.
Biophys J ; 120(14): 2927-2942, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1605429

ABSTRACT

A mainstay of personal protective equipment during the coronavirus disease 2019 pandemic is the N95 filtering facepiece respirator. N95 respirators are commonly used to protect healthcare workers from respiratory pathogens, including the novel coronavirus severe acute respiratory syndrome coronavirus 2, and are increasingly employed by other frontline workers and the general public. Under routine circumstances, these masks are disposable, single-use items, but extended use and reuse practices have been broadly enacted to alleviate critical supply shortages during the coronavirus disease 2019 pandemic. Although extended-time single use presents a low risk of pathogen transfer, repeated donning and doffing of potentially contaminated masks presents increased risk of pathogen transfer. Therefore, efficient and safe decontamination methods for N95 masks are needed to reduce the risk of reuse and mitigate local supply shortages. Here, we review the available literature concerning use of germicidal ultraviolet-C (UV-C) light to decontaminate N95 masks. We propose a practical method for repeated point-of-use decontamination using commercially available UV-C cross-linker boxes from molecular biology laboratories to expose each side of the mask to 800-1200 mJ/cm2 of UV-C. We measure the dose that penetrated to the interior of the respirators and model the potential germicidal action on coronaviruses. Our experimental results, in combination with modeled data, suggest that such a UV-C treatment cycle should induce a >3-log-order reduction in viral bioburden on the surface of the respirators and a 2-log-order reduction throughout the interior. We find that a dose 50-fold greater does not impair filtration or fit of 3M 8210 N95 masks, indicating that decontamination can be performed repeatedly. As such, UV-C germicidal irradiation is a practical strategy for small-scale point-of-use decontamination of N95s.


Subject(s)
COVID-19 , SARS-CoV-2 , Decontamination , Equipment Reuse , Humans , N95 Respirators
17.
PLoS One ; 17(1): e0257963, 2022.
Article in English | MEDLINE | ID: covidwho-1608831

ABSTRACT

In times of crisis, including the current COVID-19 pandemic, the supply chain of filtering facepiece respirators, such as N95 respirators, are disrupted. To combat shortages of N95 respirators, many institutions were forced to decontaminate and reuse respirators. While several reports have evaluated the impact on filtration as a measurement of preservation of respirator function after decontamination, the equally important fact of maintaining proper fit to the users' face has been understudied. In the current study, we demonstrate the complete inactivation of SARS-CoV-2 and preservation of fit test performance of N95 respirators following treatment with dry heat. We apply scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) measurements, Raman spectroscopy, and contact angle measurements to analyze filter material changes as a consequence of different decontamination treatments. We further compared the integrity of the respirator after autoclaving versus dry heat treatment via quantitative fit testing and found that autoclaving, but not dry heat, causes the fit of the respirator onto the users face to fail, thereby rendering the decontaminated respirator unusable. Our findings highlight the importance to account for both efficacy of disinfection and mask fit when reprocessing respirators to for clinical redeployment.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , N95 Respirators/virology , SARS-CoV-2/physiology , COVID-19/transmission , Equipment and Supplies , Health Personnel , Hot Temperature , Humans , Pandemics
18.
Infect Control Hosp Epidemiol ; 43(1): 40-44, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1586126

ABSTRACT

OBJECTIVE: The novel severe acute respiratory coronavirus virus 2 (SARS-CoV-2) was first reported in Wuhan, China, in December 2019 and is notable for being highly contagious and potentially lethal; and SARS-CoV-2 is mainly spread by droplet transmission. The US healthcare system's response to the COVID-19 pandemic has been challenged by a shortage of personal protective equipment (PPE), especially N95 respirators. Restricted use, reuse, and sanitation of PPE have been widely adopted to provide protection for frontline healthcare workers caring for often critically ill and highly contagious patients. Here, we describe our validated process for N95 respirator sanitation. DESIGN: Process development, validation, and implementation. SETTING: Level 1, urban, academic, medical center. METHODS: A multidisciplinary team developed a novel evidence-based process for N95 respirator reprocessing and sanitation using ultraviolet (UV) light. Dose measurement, structural integrity, moisture content, particle filtration, fit testing, and environmental testing were performed for both quality control and validation of the process. RESULTS: The process achieved UV light dosing for sanitation while maintaining the functional and structural integrity of the N95 respirators, with a daily potential throughput capacity of ∼12,000 masks. This process has supported our health system to provide respiratory PPE to all frontline team members. CONCLUSIONS: This novel method of N95 respirator sanitation can safely enable reuse of the N95 respirators essential for healthcare workers caring for patients with COVID-19. Our high-throughput process can extend local supplies of this critical PPE until the national supply is replenished.


Subject(s)
COVID-19 , Pandemics , Decontamination , Equipment Reuse , Humans , Masks , N95 Respirators , SARS-CoV-2 , Sanitation
19.
Infect Control Hosp Epidemiol ; 42(11): 1379-1381, 2021 11.
Article in English | MEDLINE | ID: covidwho-1576041

ABSTRACT

An N95 respirator ultraviolet germicidal irradiation and reuse program was rapidly implemented at an academic health system in the United States during the coronavirus disease 2019 pandemic. This process continues to be a safe and effective way to slow the consumption rate of N95 respirators.


Subject(s)
COVID-19 , Pandemics , Decontamination , Equipment Reuse , Humans , N95 Respirators , SARS-CoV-2 , Ultraviolet Rays , United States/epidemiology
20.
PLoS One ; 16(3): e0247575, 2021.
Article in English | MEDLINE | ID: covidwho-1573727

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to widespread shortages of N95 respirators and other personal protective equipment (PPE). An effective, reusable, locally-manufactured respirator can mitigate this problem. We describe the development, manufacture, and preliminary testing of an open-hardware-licensed device, the "simple silicone mask" (SSM). METHODS: A multidisciplinary team developed a reusable silicone half facepiece respirator over 9 prototype iterations. The manufacturing process consisted of 3D printing and silicone casting. Prototypes were assessed for comfort and breathability. Filtration was assessed by user seal checks and quantitative fit-testing according to CSA Z94.4-18. RESULTS: The respirator originally included a cartridge for holding filter material; this was modified to connect to standard heat-moisture exchange (HME) filters (N95 or greater) after the cartridge showed poor filtration performance due to flow acceleration around the filter edges, which was exacerbated by high filter resistance. All 8 HME-based iterations provided an adequate seal by user seal checks and achieved a pass rate of 87.5% (N = 8) on quantitative testing, with all failures occurring in the first iteration. The overall median fit-factor was 1662 (100 = pass). Estimated unit cost for a production run of 1000 using distributed manufacturing techniques is CAD $15 in materials and 20 minutes of labor. CONCLUSION: Small-scale manufacturing of an effective, reusable N95 respirator during a pandemic is feasible and cost-effective. Required quantities of reusables are more predictable and less vulnerable to supply chain disruption than disposables. With further evaluation, such devices may be an alternative to disposable respirators during public health emergencies. The respirator described above is an investigational device and requires further evaluation and regulatory requirements before clinical deployment. The authors and affiliates do not endorse the use of this device at present.


Subject(s)
COVID-19/prevention & control , Equipment Design/instrumentation , Filtration/instrumentation , Pandemics/prevention & control , Personal Protective Equipment , Respiratory Protective Devices , Ventilators, Mechanical , Equipment Reuse , Face , Humans , Materials Testing/instrumentation , N95 Respirators , Occupational Exposure/prevention & control , Printing, Three-Dimensional/instrumentation , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL