Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Health Care Manag Sci ; 25(1): 126-145, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1782863

ABSTRACT

Many hospital supply chains in the US follow a "stockless" structure, often implemented with the acquisition of new systems promising improved efficiencies and responsiveness. Despite vendor promises, supply chain gains from new technology are often unfulfilled or result in a reduction of performance. A critical component of achieving promised gains is the hospital's ability to accurately and consistently capture hospital inventory use. In practice, recording demand with perfect, 100% accuracy is infeasible, so our models condition on the level of accuracy in a particular hospital department, or point-of-use (POU) inventory location. Similar to previous literature, we consider actual net inventory and recorded net inventory in developing the system performance measures. We develop two models, optimizing either cost or service level, and we assume a periodic-review, base-stock (or par-level) inventory policy with full backordering. In addition to choosing the optimal order-up-to level, we seek the optimal frequency of inventory counts to reconcile inaccurate records. Results from both models provide insights for supply chain managers in the hospital setting, as well as hospital administrators considering the adoption of similar technologies or systems.


Subject(s)
Equipment and Supplies, Hospital , Inventories, Hospital , Commerce , Humans
4.
PLoS One ; 16(12): e0259996, 2021.
Article in English | MEDLINE | ID: covidwho-1592627

ABSTRACT

OBJECTIVES: To evaluate (1) the relationship between heating, ventilation, and air conditioning (HVAC) systems and bioaerosol concentrations in hospital rooms, and (2) the effectiveness of laminar air flow (LAF) and high efficiency particulate air (HEPA) according to the indoor bioaerosol concentrations. METHODS: Databases of Embase, PubMed, Cochrane Library, MEDLINE, and Web of Science were searched from 1st January 2000 to 31st December 2020. Two reviewers independently extracted data and assessed the quality of the studies. The samples obtained from different areas of hospitals were grouped and described statistically. Furthermore, the meta-analysis of LAF and HEPA were performed using random-effects models. The methodological quality of the studies included in the meta-analysis was assessed using the checklist recommended by the Agency for Healthcare Research and Quality. RESULTS: The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3. Meanwhile, the indoor bacterial concentration of LAF systems decreased by 40.05 (95% CI: -55.52, -24.58) CFU/m3 compared to that of conventional HVAC systems. CONCLUSIONS: The HVAC systems in hospitals can effectively remove bioaerosols. Further, the use of HEPA filters is an effective option for areas that are under-ventilated and require additional protection. However, other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. LIMITATION OF STUDY: Although our study analysed the overall trend of indoor bioaerosols, the conclusions cannot be extrapolated to rare, hard-to-culture, and highly pathogenic species, as well as species complexes. These species require specific culture conditions or different sampling requirements. Investigating the effects of HVAC systems on these species via conventional culture counting methods is challenging and further analysis that includes combining molecular identification methods is necessary. STRENGTH OF THE STUDY: Our study was the first meta-analysis to evaluate the effect of HVAC systems on indoor bioaerosols through microbial incubation count. Our study demonstrated that HVAC systems could effectively reduce overall bioaerosol concentrations to maintain better indoor air quality. Moreover, our study provided further evidence that other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. PRACTICAL IMPLICATION: Our research showed that HEPA filters are more effective at removing bioaerosols in HVAC systems than the current LAF system. Therefore, instead of opting for the more costly LAF system, a filter with a higher filtration rate would be a better choice for indoor environments that require higher air quality; this is valuable for operating room construction and maintenance budget allocation.


Subject(s)
Air Conditioning/instrumentation , Air Pollution, Indoor/prevention & control , Environmental Monitoring/methods , Filtration/standards , Heating/instrumentation , Hospitals/standards , Ventilation/instrumentation , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Equipment and Supplies, Hospital , Humans
5.
Front Endocrinol (Lausanne) ; 12: 735554, 2021.
Article in English | MEDLINE | ID: covidwho-1528817

ABSTRACT

Background: Frequency, dimensions, management, and outcomes of the COVID-19 pandemic in children with endocrine disorders and diabetes were assessed. Methods: A cross-sectional electronic survey was distributed to the global network of endocrine societies. Respondents' professional and practice profiles, clinic sizes, their country of practice, and the impact of COVID-19 on endocrine diseases were investigated. Results: Respondents from 131 pediatric endocrine centers in 51 countries across all continents completed the survey. Routine check-ups and education were altered in most pediatric endocrine clinics. Over 20% of clinics experienced a shortage of critical medications or essential supplies. ICU treatment was required for patients with diabetes and COVID-19 in 21.2% of centers. In diabetes, 44% of respondents reported increased diabetic ketoacidosis episodes in newly diagnosed cases and 30% in established cases. Biopsychosocial and behavioral changes were explicitly reported to be occurring among pediatric patients with endocrine disorders. Conclusions: This large global survey conducted during the COVID-19 pandemic highlights that diabetes is more challenging to manage than any other pediatric endocrine disorder, with an increased risk of morbidity. Psychological distress due to COVID-19 needs to be recognized and addressed. The importance of close contact with healthcare professionals should be emphasized, and medical supplies should be readily available to all patients.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Disease Management , Internationality , Surveys and Questionnaires , COVID-19/prevention & control , Child , Child, Preschool , Cross-Sectional Studies , Endocrine System Diseases/epidemiology , Endocrine System Diseases/therapy , Equipment and Supplies, Hospital/trends , Female , Health Personnel/trends , Humans , Male , Online Systems
6.
Eur Rev Med Pharmacol Sci ; 25(21): 6745-6766, 2021 11.
Article in English | MEDLINE | ID: covidwho-1524863

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has created the current pandemic, has caused a worldwide worry. Different countries have since enforced varying levels of lockdowns and guidelines for their populations to follow in a serious effort to mitigate the spread. Up until recently, the majority of these regulations and policies were established on the assumption that the dominant routes of transmission of this virus are through droplets and fomite contact. However, there is now a substantial amount of research pointing towards the strong possibility that SARS-CoV-2 can spread through airborne means. The World Health Organization (WHO) and the Center for Disease Control and Prevention (CDC) have recently recognized this, which poses the question of whether our collective methods of lessening transmission risk and keeping people safe have been sufficient. This paper is a comprehensive review of the evidence on SARS-CoV-2 being an airborne disease, through different epidemiological, experimental, and animal-model based published research. Studies opposing this evidence have also been discussed. The majority of these studies are favoring the high plausibility of SARS-CoV-2 aerosol transmission, and therefore the many implications of aerosol transmission have been discussed in this paper to suggest effective mitigation and control strategies.


Subject(s)
Aerosols , COVID-19/transmission , SARS-CoV-2/physiology , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cricetinae , Disease Models, Animal , Equipment and Supplies, Hospital/virology , Feces/virology , Humans , Masks , Pandemics , Particulate Matter , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Ventilation/standards , Virus Inactivation
7.
Med J Aust ; 215(11): 513-517, 2021 12 13.
Article in English | MEDLINE | ID: covidwho-1468685

ABSTRACT

OBJECTIVES: To describe the short term ability of Australian intensive care units (ICUs) to increase capacity in response to heightened demand caused by the COVID-19 pandemic. DESIGN: Survey of ICU directors or delegated senior clinicians (disseminated 30 August 2021), supplemented by Australian and New Zealand Intensive Care Society (ANZICS) registry data. SETTING: All 194 public and private Australian ICUs. MAIN OUTCOME MEASURES: Numbers of currently available and potentially available ICU beds in case of a surge; available levels of ICU-relevant equipment and staff. RESULTS: All 194 ICUs responded to the survey. The total number of currently open staffed ICU beds was 2183. This was 195 fewer (8.2%) than in 2020; the decline was greater for rural/regional (18%) and private ICUs (18%). The reported maximal ICU bed capacity (5623) included 813 additional physical ICU bed spaces and 2627 in surge areas outside ICUs. The number of available ventilators (7196) exceeded the maximum number of ICU beds. The reported number of available additional nursing staff would facilitate the immediate opening of 383 additional physical ICU beds (47%), but not the additional bed spaces outside ICUs. CONCLUSIONS: The number of currently available staffed ICU beds is lower than in 2020. Equipment shortfalls have been remediated, with sufficient ventilators to equip every ICU bed. ICU capacity can be increased in response to demand, but is constrained by the availability of appropriately trained staff. Fewer than half the potentially additional physical ICU beds could be opened with currently available staff numbers while maintaining pre-pandemic models of care.


Subject(s)
COVID-19/therapy , Hospital Bed Capacity , Intensive Care Units/organization & administration , Australia/epidemiology , COVID-19/epidemiology , Equipment and Supplies, Hospital/statistics & numerical data , Equipment and Supplies, Hospital/supply & distribution , Humans , Intensive Care Units/statistics & numerical data , New Zealand/epidemiology , Pandemics/prevention & control , Registries/statistics & numerical data
9.
Infect Dis Clin North Am ; 35(3): 575-607, 2021 09.
Article in English | MEDLINE | ID: covidwho-1340079

ABSTRACT

All invasive procedures involve contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membranes. The level of disinfection is dependent on the intended use of the object: critical, semicritical, or noncritical. New issues and practices can affect the risk of infection associated with devices and surfaces. Endoscopes continue to represent a nosocomial hazard. The contaminated surface environment in hospital rooms is important in the transmission of health care-associated pathogens. Thoroughness of cleaning must be monitored and no-touch room decontamination technology should be. In general, emerging pathogens are susceptible to currently available disinfectants.


Subject(s)
Cross Infection/prevention & control , Delivery of Health Care/organization & administration , Disinfectants , Disinfection/methods , Equipment Contamination/prevention & control , Sterilization/methods , Endoscopes , Equipment and Supplies, Hospital , Hospitals , Humans , Temperature
13.
PLoS Negl Trop Dis ; 15(8): e0009702, 2021 08.
Article in English | MEDLINE | ID: covidwho-1359097

ABSTRACT

BACKGROUND: Annually, about 2.7 million snakebite envenomings occur globally. Alongside antivenom, patients usually require additional care to treat envenoming symptoms and antivenom side effects. Efforts are underway to improve snakebite care, but evidence from the ground to inform this is scarce. This study, therefore, investigated the availability, affordability, and stock-outs of antivenom and commodities for supportive snakebite care in health facilities across Kenya. METHODOLOGY/PRINCIPAL FINDINGS: This study used an adaptation of the standardised World Health Organization (WHO)/Health Action International methodology. Data on commodity availability, prices and stock-outs were collected in July-August 2020 from public (n = 85), private (n = 36), and private not-for-profit (n = 12) facilities in Kenya. Stock-outs were measured retrospectively for a twelve-month period, enabling a comparison of a pre-COVID-19 period to stock-outs during COVID-19. Affordability was calculated using the wage of a lowest-paid government worker (LPGW) and the impoverishment approach. Accessibility was assessed combining the WHO availability target (≥80%) and LPGW affordability (<1 day's wage) measures. Overall availability of snakebite commodities was low (43.0%). Antivenom was available at 44.7% of public- and 19.4% of private facilities. Stock-outs of any snakebite commodity were common in the public- (18.6%) and private (11.7%) sectors, and had worsened during COVID-19 (10.6% versus 17.0% public sector, 8.4% versus 11.7% private sector). Affordability was not an issue in the public sector, while in the private sector the median cost of one vial of antivenom was 14.4 days' wage for an LPGW. Five commodities in the public sector and two in the private sector were deemed accessible. CONCLUSIONS: Access to snakebite care is problematic in Kenya and seemed to have worsened during COVID-19. To improve access, efforts should focus on ensuring availability at both lower- and higher-level facilities, and improving the supply chain to reduce stock-outs. Including antivenom into Universal Health Coverage benefits packages would further facilitate accessibility.


Subject(s)
Antivenins/therapeutic use , Equipment and Supplies, Hospital/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Snake Bites/drug therapy , Antivenins/economics , COVID-19/epidemiology , Costs and Cost Analysis , Equipment and Supplies, Hospital/economics , Health Services Accessibility/economics , Humans , Kenya/epidemiology , Private Sector/economics , Private Sector/statistics & numerical data , Public Sector/economics , Public Sector/statistics & numerical data , Snake Bites/economics , Snake Bites/epidemiology
15.
Surg Innov ; 28(2): 202-207, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1269859

ABSTRACT

We submit a summary of some of the activities of the IHU-Strasbourg during the initial period of the COVID-19 pandemic. These were presented as part of the coronnavation effort coordinated by Dr Adrian Park. Three initiatives are presented as follows: Protect-Est App, healthcare worker stress, and converted diving mask for ventilation. Two of the 3 projects are still ongoing, and one (Predoict-Est) has been adopted nationally.


Subject(s)
COVID-19/prevention & control , Surgery, Computer-Assisted , Surgical Procedures, Operative , Biomedical Engineering , Equipment and Supplies, Hospital , France , Healthcare Disparities , Humans , Inventions , Pandemics , SARS-CoV-2
16.
Med Care ; 59(5): 371-378, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1254915

ABSTRACT

BACKGROUND: Planning for extreme surges in demand for hospital care of patients requiring urgent life-saving treatment for coronavirus disease 2019 (COVID-19), while retaining capacity for other emergency conditions, is one of the most challenging tasks faced by health care providers and policymakers during the pandemic. Health systems must be well-prepared to cope with large and sudden changes in demand by implementing interventions to ensure adequate access to care. We developed the first planning tool for the COVID-19 pandemic to account for how hospital provision interventions (such as cancelling elective surgery, setting up field hospitals, or hiring retired staff) will affect the capacity of hospitals to provide life-saving care. METHODS: We conducted a review of interventions implemented or considered in 12 European countries in March to April 2020, an evaluation of their impact on capacity, and a review of key parameters in the care of COVID-19 patients. This information was used to develop a planner capable of estimating the impact of specific interventions on doctors, nurses, beds, and respiratory support equipment. We applied this to a scenario-based case study of 1 intervention, the set-up of field hospitals in England, under varying levels of COVID-19 patients. RESULTS: The Abdul Latif Jameel Institute for Disease and Emergency Analytics pandemic planner is a hospital planning tool that allows hospital administrators, policymakers, and other decision-makers to calculate the amount of capacity in terms of beds, staff, and crucial medical equipment obtained by implementing the interventions. Flexible assumptions on baseline capacity, the number of hospitalizations, staff-to-beds ratios, and staff absences due to COVID-19 make the planner adaptable to multiple settings. The results of the case study show that while field hospitals alleviate the burden on the number of beds available, this intervention is futile unless the deficit of critical care nurses is addressed first. DISCUSSION: The tool supports decision-makers in delivering a fast and effective response to the pandemic. The unique contribution of the planner is that it allows users to compare the impact of interventions that change some or all inputs.


Subject(s)
COVID-19 , Health Planning Guidelines , Health Services Needs and Demand , Hospitals , Surge Capacity , Workforce , Critical Care Nursing , England , Equipment and Supplies, Hospital , Health Personnel , Hospital Bed Capacity , Humans
18.
Antimicrob Resist Infect Control ; 10(1): 82, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1247603

ABSTRACT

Aerosolization may occur during reprocessing of medical devices. With the current coronavirus disease 2019 pandemic, it is important to understand the necessity of using respirators in the cleaning area of the sterile processing department. To evaluate the presence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in the air of the sterile processing department during the reprocessing of contaminated medical devices. Air and surface samples were collected from the sterile processing department of two teaching tertiary hospitals during the reprocessing of respiratory equipment used in patients diagnosed with coronavirus disease 2019 and from intensive care units during treatment of these patients. SARS-CoV-2 was detected only in 1 air sample before the beginning of decontamination process. Viable severe acute respiratory syndrome coronavirus 2 RNA was not detected in any sample collected from around symptomatic patients or in sterile processing department samples. The cleaning of respiratory equipment does not cause aerosolization of SARS-CoV-2. We believe that the use of medical masks is sufficient while reprocessing medical devices during the coronavirus disease 2019 pandemic.


Subject(s)
Aerosols , Decontamination , Equipment Reuse , Personal Protective Equipment/virology , SARS-CoV-2/isolation & purification , Air Microbiology , Cross-Sectional Studies , Equipment and Supplies, Hospital/virology , RNA, Viral/isolation & purification , Tertiary Care Centers , Ventilators, Mechanical/virology
19.
Healthc Q ; 24(1): 36-43, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1190654

ABSTRACT

The COVID-19 pandemic has highlighted the many challenges that provincial health systems have experienced while scaling health services to protect Canadians from viral transmission and support care for those who get infected. Supply chain capacity makes it possible for health systems to deliver care and implement public health initiatives safely. In this paper, we present emerging findings from a national research study that documents the key features of the fragility of the health supply chain evident across the seven Canadian provinces. Results suggest that the fragility of the health supply chain contributes to substantive challenges across health systems, thus limiting or precluding proactive and comprehensive responses to pandemic management. These findings inform strategies to strengthen supply chain capacity and performance in order to enable health systems to effectively respond to pandemic events.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care/organization & administration , COVID-19/therapy , Canada , Equipment and Supplies, Hospital/supply & distribution , Humans , Materials Management, Hospital/organization & administration , Politics , State Government
20.
J Hosp Infect ; 112: 108-113, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185068

ABSTRACT

BACKGROUND: The presence of coronaviruses on surfaces in the patient environment is a potential source of indirect transmission. Manual cleaning and disinfection measures do not always achieve sufficient removal of surface contamination. This increases the importance of automated solutions in the context of final disinfection of rooms in the hospital setting. Ozone is a highly effective disinfectant which, combined with high humidity, is an effective agent against respiratory viruses. Current devices allow continuous nebulization for high room humidity as well as ozone production without any consumables. AIM: In the following study, the effectiveness of a fully automatic room decontamination system based on ozone was tested against bacteriophage Φ6 (phi 6) and bovine coronavirus L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2. METHODS: For this purpose, various surfaces (ceramic tile, stainless steel surface and furniture board) were soiled with the surrogate viruses and placed at two different levels in a gas-tight test room. After using the automatic decontamination device according to the manufacturer's instructions, the surrogate viruses were recovered from the surfaces and examined by quantitative cultures. Then, reduction factors were calculated. FINDINGS: The ozone-based room decontamination device achieved virucidal efficacy (reduction factor >4 log10) against both surrogate organisms regardless of the different surfaces and positions confirming a high activity under the used conditions. CONCLUSION: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further investigations are necessary for a safe application and efficacy in practice as well as integration into routine processes.


Subject(s)
Automation/instrumentation , COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , Disinfection/methods , Ozone/pharmacology , Animals , Bacteriophages/drug effects , COVID-19/transmission , Cattle , Coronavirus, Bovine/drug effects , Cross Infection/prevention & control , Cross Infection/virology , Decontamination/instrumentation , Decontamination/methods , Equipment and Supplies, Hospital/virology , Hospitals , Humans , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL