Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Cell Mol Med ; 26(10): 3022-3030, 2022 May.
Article in English | MEDLINE | ID: covidwho-1788871

ABSTRACT

Infection with the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the associated coronavirus disease-19 (COVID-19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID-19 disease process were tested after the acute phase of SARS-CoV-2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID-19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID-19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID-19 patients. Higher RBC-NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation-disaggregation in COVID-19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID-19 disease course.


Subject(s)
COVID-19 , Erythrocyte Deformability/physiology , Erythrocytes/metabolism , Female , Humans , Male , Rheology , SARS-CoV-2
2.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1736943

ABSTRACT

Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.


Subject(s)
COVID-19/metabolism , Erythrocytes/metabolism , SARS-CoV-2/metabolism , Sialoglycoproteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Basigin/metabolism , Binding Sites , COVID-19/virology , Glycosylation , Hemagglutination , Hemagglutinins, Viral/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Protein Binding , SARS-CoV-2/physiology , Viral Fusion Proteins/metabolism , Virus Internalization
3.
Commun Biol ; 5(1): 152, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1701655

ABSTRACT

The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g., COVID-19. Factor H (FH) is the main regulator of the alternative pathway of complement activation and could be a therapy to restore homeostasis. However, recombinant FH is not available. Engineered FH versions may be alternative therapeutics. Here, we designed a synthetic protein, MFHR13, as a multitarget complement regulator. It combines the dimerization and C5-regulatory domains of human FH-related protein 1 (FHR1) with the C3-regulatory and cell surface recognition domains of human FH, including SCR 13. In summary, the fusion protein MFHR13 comprises SCRs FHR11-2:FH1-4:FH13:FH19-20. It protects sheep erythrocytes from complement attack exhibiting 26 and 4-fold the regulatory activity of eculizumab and human FH, respectively. Furthermore, we demonstrate that MFHR13 and FHR1 bind to all proteins forming the membrane attack complex, which contributes to the mechanistic understanding of FHR1. We consider MFHR13 a promising candidate as therapeutic for complement-associated diseases.


Subject(s)
Blood Proteins/metabolism , Complement Activation , Complement Factor H/metabolism , Complement System Proteins/metabolism , Erythrocytes/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Animals , Bryopsida/genetics , Bryopsida/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Complement Membrane Attack Complex/metabolism , Humans , Models, Molecular , Pandemics/prevention & control , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , SARS-CoV-2/physiology , Sheep
4.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1701642

ABSTRACT

Several diseases (such as diabetes, cancer, and neurodegenerative disorders) affect the morpho-functional aspects of red blood cells, sometimes altering their normal metabolism. In this review, the hematological changes are evaluated, with particular focus on the morphology and metabolic aspects of erythrocytes. Changes in the functionality of such cells may, in fact, help provide important information about disease severity and progression. The viral infection causes significant damage to the blood cells that are altered in size, rigidity, and distribution width. Lower levels of hemoglobin and anemia have been reported in several studies, and an alteration in the concentration of antioxidant enzymes has been shown to promote a dangerous state of oxidative stress in red blood cells. Patients with severe COVID-19 showed an increase in hematological changes, indicating a progressive worsening as COVID-19 severity progressed. Therefore, monitored hematological alterations in patients with COVID-19 may play an important role in the management of the disease and prevent the risk of a severe course of the disease. Finally, monitored changes in erythrocytes and blood, in general, may be one of the causes of the condition known as Long COVID.


Subject(s)
COVID-19/blood , COVID-19/diet therapy , Erythrocytes/virology , Anemia/virology , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/etiology , COVID-19/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Hemoglobins/metabolism , Hemolysis , Humans , Oxidative Stress
5.
Viruses ; 14(2)2022 02 06.
Article in English | MEDLINE | ID: covidwho-1674826

ABSTRACT

An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.


Subject(s)
Carbohydrates/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Carbohydrates/genetics , China , Erythrocytes/metabolism , Humans , Ligands , Polysaccharides , Protein Array Analysis , Protein Binding , SARS-CoV-2/metabolism , Virus Internalization
6.
Bull Exp Biol Med ; 172(3): 283-287, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611428

ABSTRACT

We studied laboratory parameters of patients with COVID-19 against the background of chronic pathologies (cardiovascular pathologies, obesity, type 2 diabetes melitus, and cardiovascular pathologies with allergy to statins). A decrease in pH and a shift in the electrolyte balance of blood plasma were revealed in all studied groups and were most pronounced in patients with cardiovascular pathologies with allergy to statin. It was found that low pH promotes destruction of lipid components of the erythrocyte membranes in patients with chronic pathologies, which was seen from a decrease in Na+/K+-ATPase activity and significant hyponatrenemia. In patients with cardiovascular pathologies and allergy to statins, erythrocyte membranes were most sensitive to a decrease in pH, while erythrocyte membranes of obese patients showed the greatest resistance to low pH and oxidative stress.


Subject(s)
COVID-19/complications , Hyponatremia/etiology , Hypoxia/complications , Sodium-Potassium-Exchanging ATPase/physiology , Aged , COVID-19/metabolism , Cardiovascular Diseases/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/virology , Case-Control Studies , Chronic Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/virology , Drug Hypersensitivity/complications , Drug Hypersensitivity/metabolism , Drug Hypersensitivity/virology , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Female , Fluid Shifts/physiology , Humans , Hydrogen-Ion Concentration , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyponatremia/metabolism , Hyponatremia/virology , Hypoxia/metabolism , Lipid Peroxidation/physiology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/virology , Oxidative Stress/physiology , SARS-CoV-2/physiology , Sodium/metabolism , Stress, Physiological/physiology
7.
Front Immunol ; 12: 784989, 2021.
Article in English | MEDLINE | ID: covidwho-1603282

ABSTRACT

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


Subject(s)
COVID-19/metabolism , Ceramides/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Ceramides/blood , Enzyme Activation , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Fatty Acids/metabolism , Humans , Intensive Care Units , Patient Acuity , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/blood , Sphingomyelins/metabolism
8.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1599254

ABSTRACT

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Erythrocytes/metabolism , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Aged , Cells, Cultured , Humans , Lipoproteins, HDL/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , SARS-CoV-2 , Serum Albumin/metabolism , Sphingosine/blood
9.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1559238

ABSTRACT

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Erythrocytes/metabolism , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Aged , Cells, Cultured , Humans , Lipoproteins, HDL/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , SARS-CoV-2 , Serum Albumin/metabolism , Sphingosine/blood
10.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1346499

ABSTRACT

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.


Subject(s)
Blood Group Antigens/metabolism , Erythrocytes/metabolism , Glycomics , Polysaccharides/analysis , Protein Processing, Post-Translational , Glycosylation , Humans , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
PLoS One ; 16(7): e0254498, 2021.
Article in English | MEDLINE | ID: covidwho-1325435

ABSTRACT

To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Animals , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Female , Malaria Vaccines/therapeutic use , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Sporozoites/pathogenicity
12.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1304662

ABSTRACT

The aim of this study was to evaluate the effect of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, on red blood cell parameters in the context of iron homeostasis in patients with tuberous sclerosis complex (TSC) and evaluate its effect on cell size in vitro. Everolimus has a significant impact on red blood cell parameters in patients with TSC. The most common alteration was microcytosis. The mean MCV value decreased by 9.2%, 12%, and 11.8% after 3, 6, and 12 months of everolimus treatment. The iron level declined during the first 3 months, and human soluble transferrin receptor concentration increased during 6 months of therapy. The size of K562 cells decreased when cultured in the presence of 5 µM everolimus by approximately 8%. The addition of hemin to the cell culture with 5 µM everolimus did not prevent any decrease in cell size. The stage of erythroid maturation did not affect the response to everolimus. Our results showed that the mTOR inhibitor everolimus caused red blood cell microcytosis in vivo and in vitro. This effect is not clearly related to a deficit of iron and erythroid maturation. This observation confirms that mTOR signaling plays a complex role in the control of cell size.


Subject(s)
Cell Size/drug effects , Erythrocytes/drug effects , Erythrocytes/pathology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adolescent , Biomarkers , Cell Differentiation/drug effects , Cell Line , Child , Child, Preschool , Erythrocyte Indices , Erythrocytes/metabolism , Everolimus/administration & dosage , Everolimus/adverse effects , Everolimus/pharmacology , Flow Cytometry , Humans , Iron/metabolism , K562 Cells , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
13.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
14.
Eur Rev Med Pharmacol Sci ; 25(10): 3886-3897, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264765

ABSTRACT

OBJECTIVE: Platelets, blood coagulation along with fibrinolysis are greatly involved in the pathophysiology of infectious diseases induced by bacteria, parasites and virus. This phenomenon is not surprising since both the innate immunity and the hemostatic systems are two ancestral mechanisms which closely cooperate favoring host's defense against foreign invaders. However, the excessive response of these systems may be dangerous for the host itself. MATERIALS AND METHODS: We searched and retrieved the articles, using the following electronic database: MedLine and Embase. We limited our search to articles published in English, but no restrictions in terms of article type, publication year, and geography were adopted. RESULTS: The hemostatic phenotype of the infectious diseases is variable depending on the points of attack of the different involved pathogens. Infectious diseases which show a prothrombotic phenotype are bacterial sepsis, SARS-CoV-2 and malaria. However, among the bacterial sepsis, Yersinia Pestis is characterized by a profibrinolytic behavior. On the contrary, the hemorrhagic fevers, due to Dengue and Ebola virus, mainly exploit the activation of fibrinolysis secondary to a huge endothelial damage which can release a large amount of t-PA in the early phase of the diseases. CONCLUSIONS: Blood coagulation and fibrinolysis are greatly activated based on the strategy of the different infectious agents which exploit the excess of response of both systems to achieve the greatest possible virulence.


Subject(s)
Blood Coagulation , COVID-19/pathology , Fibrinolysis , COVID-19/complications , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , SARS-CoV-2/isolation & purification , Thromboplastin/metabolism , Viruses/pathogenicity
15.
Immunobiology ; 226(3): 152093, 2021 05.
Article in English | MEDLINE | ID: covidwho-1237723

ABSTRACT

In order to study the mechanisms of COVID-19 damage following the complement activation phase occurring during the innate immune response to SARS-CoV-2, CR1 (the regulating complement activation factor, CD35, the C3b/C4b receptor), C4d deposits on Erythrocytes (E), and the products of complement activation C3b/C3bi, were assessed in 52 COVID-19 patients undergoing O2 therapy or assisted ventilation in ICU units in Rheims France. An acquired decrease of CR1 density on E from COVID-19 patients was observed (Mean = 418, SD = 162, N = 52) versus healthy individuals (Mean = 592, SD = 287, N = 400), Student's t-test p < 10-6, particularly among fatal cases, and in parallel with several parameters of clinical severity. Large deposits of C4d on E in patients were well above values observed in normal individuals, mostly without concomitant C3 deposits, in more than 80% of the patients. This finding is reminiscent of the increased C4d deposits on E previously observed to correlate with sub endothelial pericapillary deposits in organ transplant rejection, and with clinical SLE flares. Conversely, significant C3 deposits on E were only observed among » of the patients. The decrease of CR1/E density, deposits of C4 fragments on E and previously reported detection of virus spikes or C3 on E among COVID-19 patients, suggest that the handling and clearance of immune complex or complement fragment coated cell debris may play an important role in the pathophysiology of SARS-CoV-2. Measurement of C4d deposits on E might represent a surrogate marker for assessing inflammation and complement activation occurring in organ capillaries and CR1/E decrease might represent a cumulative index of complement activation in COVID-19 patients. Taken together, these original findings highlight the participation of complement regulatory proteins and indicate that E are important in immune pathophysiology of COVID-19 patients. Besides a potential role for monitoring the course of disease, these observations suggest that novel therapies such as the use of CR1, or CR1-like molecules, in order to down regulate complement activation and inflammation, should be considered.


Subject(s)
Antigen-Antibody Complex/metabolism , COVID-19/immunology , Complement C4b/metabolism , Erythrocytes/metabolism , Peptide Fragments/metabolism , Receptors, Complement 3b/metabolism , SARS-CoV-2/physiology , COVID-19/therapy , Complement Activation , Erythrocytes/pathology , France , Gene Expression Regulation , Humans , Intensive Care Units , Receptors, Complement 3b/genetics , Receptors, Complement 3b/therapeutic use
16.
Transfusion ; 61(4): 1171-1180, 2021 04.
Article in English | MEDLINE | ID: covidwho-1085273

ABSTRACT

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic is having a major global impact, and the resultant response in the development of new diagnostics is unprecedented. The detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a role in managing the pandemic. We evaluated the feasibility of using SARS-CoV-2 peptide Kode Technology-modified red cells (C19-kodecytes) to develop an assay compatible with existing routine serologic platforms. STUDY DESIGN AND METHODS: A panel of eight unique red cells modified using Kode Technology function-spacer-lipid constructs and bearing short SARS-CoV-2 peptides was developed (C19-kodecyte assay). Kodecytes were tested against undiluted expected antibody-negative and -positive plasma samples in manual tube and three column agglutination technology (CAT) platforms. Parallel analysis with the same peptides in solid phase by enzyme immunoassays was performed. Evaluation samples included >120 expected negative blood donor samples and >140 COVID-19 convalescent plasma samples, with independent serologic analysis from two centers. RESULTS: Specificity (negative reaction rate against expected negative samples) in three different CAT platforms against novel C19-kodecytes was >91%, which correlated with published literature. Sensitivity (positive reaction rate against expected positive convalescent, PCR-confirmed samples) ranged from 82% to 97% compared to 77% with the Abbott Architect SARS-CoV-2 IgG assay. Manual tube serology was less sensitive than CAT. Enzyme immunoassay results with some Kode Technology constructs also had high sensitivity. CONCLUSIONS: C19-kodecytes are viable for use as serologic reagent red cells for the detection of SARS-CoV-2 antibody with routine blood antibody screening equipment.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19 , Erythrocytes/metabolism , SARS-CoV-2/metabolism , COVID-19/blood , COVID-19/diagnosis , Humans
17.
Prostaglandins Leukot Essent Fatty Acids ; 166: 102250, 2021 03.
Article in English | MEDLINE | ID: covidwho-1039530

ABSTRACT

Very-long chain omega-3 fatty acids (EPA and DHA) have anti-inflammatory properties that may help reduce morbidity and mortality from COVID-19 infection. We conducted a pilot study in 100 patients to test the hypothesis that RBC EPA+DHA levels (the Omega-3 Index, O3I) would be inversely associated with risk for death by analyzing the O3I in banked blood samples drawn at hospital admission. Fourteen patients died, one of 25 in quartile 4 (Q4) (O3I ≥5.7%) and 13 of 75 in Q1-3. After adjusting for age and sex, the odds ratio for death in patients with an O3I in Q4 vs Q1-3 was 0.25, p = 0.07. Although not meeting the classical criteria for statistical significance, this strong trend suggests that a relationship may indeed exist, but more well-powered studies are clearly needed.


Subject(s)
COVID-19/blood , COVID-19/mortality , Fatty Acids, Omega-3/blood , Adult , Aged , Aged, 80 and over , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Erythrocytes/metabolism , Female , Humans , Male , Middle Aged , Pilot Projects , Resuscitation Orders
20.
J Proteomics ; 234: 104083, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-988504

ABSTRACT

Using high-throughput BioPlex assays, we determined that six fractions from the venom of Conus nux inhibit the adhesion of various recombinant PfEMP-1 protein domains (PF08_0106 CIDR1α3.1, PF11_0521 DBL2ß3, and PFL0030c DBL3X and DBL5e) to their corresponding receptors (CD36, ICAM-1, and CSA, respectively). The protein domain-receptor interactions permit P. falciparum-infected erythrocytes (IE) to evade elimination in the spleen by adhering to the microvasculature in various organs including the placenta. The sequences for the main components of the fractions, determined by tandem mass spectrometry, yielded four T-superfamily conotoxins, one (CC-Loop-CC) with I-IV, II-III connectivity and three (CC-Loop-CXaaC) with a I-III, II-IV connectivity. The 3D structure for one of the latter, NuxVA = GCCPAPLTCHCVIY, revealed a novel scaffold defined by double turns forming a hairpin-like structure stabilized by the two disulfide bonds. Two other main fraction components were a miniM conotoxin, and a O2-superfamily conotoxin with cysteine framework VI/VII. This study is the first one of its kind suggesting the use of conotoxins for developing pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as inhibitors of protein-protein interactions as treatment. BIOLOGICAL SIGNIFICANCE: Among the 850+ species of cone snail species there are hundreds of thousands of diverse venom exopeptides that have been selected throughout several million years of evolution to capture prey and deter predators. They do so by targeting several surface proteins present in target excitable cells. This immense biomolecular library of conopeptides can be explored for potential use as therapeutic leads against persistent and emerging diseases affecting non-excitable systems. We aim to expand the pharmacological reach of conotoxins/conopeptides by revealing their in vitro capacity to disrupt protein-protein and protein-polysaccharide interactions that directly contribute to pathology of Plasmodium falciparum malaria. This is significant for severe forms of malaria, which might be deadly even after treated with current parasite-killing drugs because of persistent cytoadhesion of P. falciparum infected erythrocytes even when parasites within red blood cells are dead. Anti-adhesion adjunct drugs would de-sequester or prevent additional sequestration of infected erythrocytes and may significantly improve survival of malaria patients. These results provide a lead for further investigations into conotoxins and other venom peptides as potential candidates for anti-adhesion or blockade-therapies. This study is the first of its kind and it suggests that conotoxins can be developed as pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as potential inhibitors of protein-protein interactions as treatment.


Subject(s)
CD36 Antigens , DNA Repair Enzymes , Erythrocytes , Intercellular Adhesion Molecule-1 , Mollusk Venoms , Plasmodium falciparum , Transcription Factors , Animals , CD36 Antigens/chemistry , CD36 Antigens/metabolism , COVID-19 , Conus Snail , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Erythrocytes/chemistry , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Mollusk Venoms/chemistry , Mollusk Venoms/pharmacology , Plasmodium falciparum/chemistry , Plasmodium falciparum/metabolism , Protein Domains , Protozoan Proteins , SARS-CoV-2 , Transcription Factors/chemistry , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL