Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biophys J ; 121(7): 1276-1288, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1693832

ABSTRACT

Polymerase chain reaction (PCR) is a powerful tool to diagnose infectious diseases. Uracil DNA glycosylase (UDG) is broadly used to remove carryover contamination in PCR. However, UDG can contribute to false negative results when not inactivated completely, leading to DNA degradation during the amplification step. In this study, we designed novel thermolabile UDG derivatives by supercomputing molecular dynamic simulations and residual network analysis. Based on enzyme activity analysis, thermolability, thermal stability, and biochemical experiments of Escherichia coli-derived UDG and 22 derivatives, we uncovered that the UDG D43A mutant eliminated the false negative problem, demonstrated high efficiency, and offered great benefit for use in PCR diagnosis. We further obtained structural and thermodynamic insights into the role of the D43A mutation, including perturbed protein structure near D43; weakened pairwise interactions of D43 with K42, N46, and R80; and decreased melting temperature and native fraction of the UDG D43A mutant compared with wild-type UDG.


Subject(s)
Escherichia coli , Uracil-DNA Glycosidase , Escherichia coli/metabolism , Mutation , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
2.
Signal Transduct Target Ther ; 7(1): 44, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1683982

ABSTRACT

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Models, Molecular , Neutralization Tests , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671749

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19/drug therapy , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
4.
PLoS One ; 17(2): e0262591, 2022.
Article in English | MEDLINE | ID: covidwho-1666759

ABSTRACT

SARS-CoV-2 Nucleocapsid (N) is the most abundant viral protein expressed in host samples and is an important antigen for diagnosis. N is a 45 kDa protein that does not present disulfide bonds. Intending to avoid non-specific binding of SARS-CoV-2 N to antibodies from patients who previously had different coronaviruses, a 35 kDa fragment of N was expressed without a conserved motif in E. coli as inclusion bodies (N122-419-IB). Culture media and IB washing conditions were chosen to obtain N122-419-IB with high yield (370 mg/L bacterial culture) and protein purity (90%). High pressure solubilizes protein aggregates by weakening hydrophobic and ionic interactions and alkaline pH promotes solubilization by electrostatic repulsion. The association of pH 9.0 and 2.4 kbar promoted efficient solubilization of N122-419-IB without loss of native-like tertiary structure that N presents in IB. N122-419 was refolded with a yield of 85% (326 mg/L culture) and 95% purity. The refolding process takes only 2 hours and the protein is ready for use after pH adjustment, avoiding the necessity of dialysis or purification. Antibody binding of COVID-19-positive patients sera to N122-419 was confirmed by Western blotting. ELISA using N122-419 is effective in distinguishing between sera presenting antibodies against SARS-CoV-2 from those who do not. To the best of our knowledge, the proposed condition for IB solubilization is one of the mildest described. It is possible that the refolding process can be extended to a wide range of proteins with high yields and purity, even those that are sensible to very alkaline pH.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/chemistry , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Immunoglobulin G/blood , Inclusion Bodies/chemistry , Protein Refolding , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrogen-Ion Concentration , Hydrostatic Pressure , Immunoglobulin G/immunology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Solubility
5.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1666655

ABSTRACT

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
6.
RNA ; 28(2): 227-238, 2022 02.
Article in English | MEDLINE | ID: covidwho-1533393

ABSTRACT

The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.


Subject(s)
Bacillus subtilis/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endoribonucleases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Microorganisms, Genetically-Modified , Mutation , RNA Stability , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Substrate Specificity , Viral Nonstructural Proteins/metabolism
7.
Bull Exp Biol Med ; 172(1): 53-56, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1520385

ABSTRACT

The antiviral activity of recombinant human IFN-lambda type 1 (IFNλ-1) against culture strain of SARS-CoV-2 virus was determined by infecting a highly sensitive VeroE6 coronavirus cell culture after preincubation test (the cell monolayer was incubated with 4-fold dilutions of IFNλ-1 in a concentration range of 0.16-42,500 ng/ml in a culture medium for 12 h at 37°C) and without preincubation (simultaneous addition of different concentrations of IFNλ-1 and SARS-CoV-2 infection in a dose of 102 TCID50). The created recombinant human IFNλ-1 demonstrated obvious antiviral activity against SARS-CoV-2 virus in vitro. In the tests with and without preincubation, IFNλ-1 exhibited significant activity, although somewhat lower in variant with simultaneous addition of IFNλ-1 and virus to the cell culture. It should be noted that the antiviral effect of IFNλ-1 was observed in a wide range of concentrations.


Subject(s)
Antiviral Agents/pharmacology , Interferons/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , Viral Load/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , COVID-19/drug therapy , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Interferons/biosynthesis , Interferons/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Vero Cells , Viral Load/genetics
8.
mBio ; 12(6): e0293621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1518122

ABSTRACT

Methods for detecting and dissecting the interactions of virally encoded proteins are essential for probing basic viral biology and providing a foundation for therapeutic advances. The dearth of targeted therapeutics for the treatment of coronavirus disease 2019 (COVID-19), an ongoing global health crisis, underscores the importance of gaining a deeper understanding of the interactions of proteins encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we describe the use of a convenient bacterial cell-based two-hybrid (B2H) system to analyze the SARS-CoV-2 proteome. We identified 16 distinct intraviral protein-protein interactions (PPIs), involving 16 proteins. We found that many of the identified proteins interact with more than one partner. Further, our system facilitates the genetic dissection of these interactions, enabling the identification of selectively disruptive mutations. We also describe a modified B2H system that permits the detection of disulfide bond-dependent PPIs in the normally reducing Escherichia coli cytoplasm, and we used this system to detect the interaction of the SARS-CoV-2 spike protein receptor-binding domain (RBD) with its cognate cell surface receptor ACE2. We then examined how the RBD-ACE2 interaction is perturbed by several RBD amino acid substitutions found in currently circulating SARS-CoV-2 variants. Our findings illustrate the utility of a genetically tractable bacterial system for probing the interactions of viral proteins and investigating the effects of emerging mutations. In principle, the system could also facilitate the identification of potential therapeutics that disrupt specific interactions of virally encoded proteins. More generally, our findings establish the feasibility of using a B2H system to detect and dissect disulfide bond-dependent interactions of eukaryotic proteins. IMPORTANCE Understanding how virally encoded proteins interact with one another is essential in elucidating basic viral biology, providing a foundation for therapeutic discovery. Here, we describe the use of a versatile bacterial cell-based system to investigate the interactions of the protein set encoded by SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. We identified 16 distinct intraviral protein-protein interactions, involving 16 proteins, many of which interact with more than one partner. Our system facilitates the genetic dissection of these interactions, enabling the identification of selectively disruptive mutations. We also describe a modified version of our bacterial cell-based system that permits detection of the interaction between the SARS-CoV-2 spike protein (specifically, its receptor-binding domain) and its cognate human cell surface receptor ACE2, and we investigated the effects of spike mutations found in currently circulating SARS-CoV-2 variants. Our findings illustrate the general utility of our system for probing the interactions of virally encoded proteins.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Assay/methods , Escherichia coli/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , Escherichia coli/genetics , Humans , Mutation , Protein Binding , Proteome , SARS-CoV-2/genetics , Viral Proteins/genetics
9.
Sci Rep ; 11(1): 21075, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493212

ABSTRACT

Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered "living bioreactors" for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.


Subject(s)
Chiroptera/virology , Gastrointestinal Microbiome , Mutagens , Animals , Antioxidants/metabolism , Antiviral Agents , Bacillus , Bacterial Proteins/genetics , Biosensing Techniques , COVID-19 , DNA , DNA Damage , Disease Reservoirs/virology , Escherichia coli/metabolism , Feces , Immune System , Inflammation , Lactic Acid/metabolism , Mass Spectrometry , Mutagenesis , Oxidative Stress , Rec A Recombinases/metabolism , SARS-CoV-2 , Viruses/isolation & purification , Zoonoses/virology
10.
PLoS One ; 16(6): e0252507, 2021.
Article in English | MEDLINE | ID: covidwho-1388918

ABSTRACT

We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , COVID-19/epidemiology , Diagnostic Tests, Routine/standards , Indicators and Reagents/standards , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing/methods , Cameroon/epidemiology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , Ghana/epidemiology , Humans , Indicators and Reagents/chemistry , Indicators and Reagents/metabolism , Indicators and Reagents/supply & distribution , Molecular Diagnostic Techniques , Plasmids/chemistry , Plasmids/metabolism , Real-Time Polymerase Chain Reaction/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Synthetic Biology/methods , Transformation, Bacterial , United Kingdom/epidemiology
11.
Virol Sin ; 36(6): 1484-1491, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1359969

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003, and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available; thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain (RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensin-converting enzyme 2 (ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.


Subject(s)
COVID-19 , SARS Virus , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Escherichia coli/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Protein Binding , SARS Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
Protein Sci ; 30(9): 1983-1990, 2021 09.
Article in English | MEDLINE | ID: covidwho-1287395

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS-CoV-2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre-expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.


Subject(s)
SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Protein Domains , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
mBio ; 12(3): e0150221, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1286720

ABSTRACT

Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity. IMPORTANCE S. maltophilia is an increasingly important opportunistic pathogen. Inherently resistant to many antibiotics, S. maltophilia is often associated with lung infection, being, among other things, a complicating factor in cystic fibrosis patients. Moreover, it is a common form of coinfection in COVID-19 patients. In these various clinical settings and in natural habitats, S. maltophilia coexists with other pathogens, including P. aeruginosa. Previously, we documented that S. maltophilia possesses a T4SS that kills other bacteria, a notable observation given that most prior work on interbacterial competition has highlighted bactericidal effects of type VI secretion systems. By utilizing approaches ranging from bioinformatics to mutant analysis to protein translocation assays, we have now identified two substrates of the Stenotrophomonas T4SS that largely mediate the killing of pathogenic P. aeruginosa. These results represent a major advance in understanding S. maltophilia, the roles of T4SSs, concepts regarding clinically relevant, interbacterial competition, and activities of bactericidal effectors.


Subject(s)
Antibiosis/genetics , Escherichia coli/metabolism , Pseudomonas aeruginosa/metabolism , Stenotrophomonas maltophilia/genetics , Type IV Secretion Systems/metabolism , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Humans , Stenotrophomonas maltophilia/metabolism , Type IV Secretion Systems/genetics
14.
Nat Commun ; 12(1): 3287, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1253936

ABSTRACT

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in host cells. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.


Subject(s)
Magnesium/chemistry , RNA Caps/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Sequence , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Viral , Humans , Magnesium/metabolism , Methylation , Methyltransferases , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Caps/chemistry , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/ultrastructure , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics
15.
SLAS Discov ; 26(6): 757-765, 2021 07.
Article in English | MEDLINE | ID: covidwho-1194439

ABSTRACT

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Subject(s)
Adenosine/analogs & derivatives , High-Throughput Screening Assays , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Adenosine/chemistry , Adenosine/pharmacology , COVID-19/virology , Cloning, Molecular , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Methylation , Methyltransferases , Models, Molecular , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Tritium , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
16.
Biochem Biophys Res Commun ; 558: 79-85, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1193239

ABSTRACT

During 2020, the COVID-19 pandemic affected almost 108 individuals. Quite a number of vaccines against COVID-19 were therefore developed, and a few recently received authorization for emergency use. Overall, these vaccines target specific viral proteins by antibodies whose synthesis is directly elicited or indirectly triggered by nucleic acids coding for the desired targets. Among these targets, the receptor binding domain (RBD) of COVID-19 spike protein (SP) does frequently occur in the repertoire of candidate vaccines. However, the immunogenicity of RBD per se is limited by its low molecular mass, and by a structural rearrangement of full-length SP accompanied by the detachment of RBD. Here we show that the RBD of COVID-19 SP can be conveniently produced in Escherichia coli when fused to a fragment of CRM197, a variant of diphtheria toxin currently used for a number of conjugated vaccines. In particular, we show that the CRM197-RBD chimera solubilized from inclusion bodies can be refolded and purified to a state featuring the 5 native disulphide bonds of the parental proteins, the competence in binding angiotensin-converting enzyme 2, and a satisfactory stability at room temperature. Accordingly, our observations provide compulsory information for the development of a candidate vaccine directed against COVID-19.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Base Sequence , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Mass Spectrometry , Models, Molecular , Protein Refolding , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/isolation & purification , Temperature , Time Factors
17.
SLAS Discov ; 26(6): 766-774, 2021 07.
Article in English | MEDLINE | ID: covidwho-1192708

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Exonucleases/antagonists & inhibitors , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Enzyme Assays , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Exonucleases/genetics , Exonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
18.
ACS Appl Mater Interfaces ; 13(11): 12912-12927, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1185365

ABSTRACT

The current pandemic caused by SARS-CoV-2 has seen a widespread use of personal protective equipment, especially face masks. This has created the need to develop better and reusable protective masks with built-in antimicrobial, self-cleaning, and aerosol filtration properties to prevent the transmission of air-borne pathogens such as the coronaviruses. Herein, molybdenum disulfide (MoS2) nanosheets are used to prepare modified polycotton fabrics having excellent antibacterial activity and photothermal properties. Upon sunlight irradiation, the nanosheet-modified fabrics rapidly increased the surface temperature to ∼77 °C, making them ideal for sunlight-mediated self-disinfection. Complete self-disinfection of the nanosheet-modified fabric was achieved within 3 min of irradiation, making the fabrics favorably reusable upon self-disinfection. The nanosheet-modified fabrics maintained the antibacterial efficiency even after 60 washing cycles. Furthermore, the particle filtration efficiency of three-layered surgical masks was found to be significantly improved through incorporation of the MoS2-modified fabric as an additional layer of protective clothing, without compromising the breathability of the masks. The repurposed surgical masks could filter out around 97% of 200 nm particles and 96% of 100 nm particles, thus making them potentially useful for preventing the spread of coronaviruses (120 nm) by trapping them along with antibacterial protection against other airborne pathogens.


Subject(s)
Anti-Infective Agents/chemistry , Disulfides/chemistry , Molybdenum/chemistry , Nanostructures/chemistry , Personal Protective Equipment , Recycling , Anti-Infective Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Escherichia coli/drug effects , Escherichia coli/metabolism , Glutathione/chemistry , Humans , Nanostructures/toxicity , Oxidation-Reduction , Particle Size , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Sunlight , Temperature
19.
Biomol NMR Assign ; 15(1): 153-157, 2021 04.
Article in English | MEDLINE | ID: covidwho-1141506

ABSTRACT

Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Magnetic Resonance Spectroscopy , Carbon Isotopes , Escherichia coli/metabolism , Hydrogen , Nitrogen Isotopes , Protein Binding , Protein Domains , Protein Structure, Secondary , Software
20.
SLAS Discov ; 26(6): 749-756, 2021 07.
Article in English | MEDLINE | ID: covidwho-1136206

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5' end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3'-5' exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , Nitro Compounds/pharmacology , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Thiazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Drug Repositioning , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Mass Spectrometry/methods , Methylation , Nitro Compounds/chemistry , Prescription Drugs/chemistry , Prescription Drugs/pharmacology , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiazoles/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL