Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
J Hazard Mater ; 452: 131292, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2268830


Microbial safety in water has always been the focus of attention, especially during the COVID-19 pandemic. Development of green, efficient and safe disinfection technology is the key to control the spread of pathogenic microorganisms. Here, an in situ aquatic electrode KrCl excimer radiation with main emission wavelength 222 nm (UV222) was designed and used to disinfect model waterborne virus and bacteria, i.e. phage MS2, E. coli and S. aureus. High inactivation efficacy and diversity of inactivation mechanisms of UV222 were proved by comparision with those of commercial UV254. UV222 could totally inactivate MS2, E. coli and S. aureus with initial concentrations of ∼107 PFU or CFU mL-1 within 20, 15, and 36 mJ/cm2, respectively. The UV dose required by UV254 to inactivate the same logarithmic pathogenic microorganism is at least twice that of UV222. The protein, genomic and cell membrane irreparable damage contributed to the microbial inactivation by UV222, but UV254 only act on nucleic acid of the target microorganisms. We found that UV222 damage nucleic acid with almost the same or even higher efficacy with UV254. In addition, free base damage of UV222 in similar ways with UV254(dimer and hydrate). But due to the quantum yield of free base degradation of UV222 was greater than UV254, the photolysis rates of UV222 to A, G, C and U four bases were 11.5, 1.2, 3.2 and 1 times as those of UV254, respectively. Excellent disinfection performance in UV222 irradiation was also achieved in real water matrices (WWTP and Lake). In addition, it was proved that coexisting HCO3- or HPO42 - in real and synthetic water matrices can produce • OH to promote UV222 disinfection. This study provided novel insight into the UV222 disinfection process and demonstrated its possibility to take place of the conventional ultraviolet mercury lamp in water purification.

COVID-19 , Water Purification , Humans , Ultraviolet Rays , Escherichia coli/radiation effects , Staphylococcus aureus , Pandemics , Disinfection , Water
ACS Appl Mater Interfaces ; 14(4): 4892-4898, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1633913


This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 µg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 µg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.

Antiviral Agents/pharmacology , COVID-19/therapy , SARS-CoV-2/radiation effects , COVID-19/genetics , COVID-19/virology , Cations/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Humans , Light , Phototherapy , SARS-CoV-2/pathogenicity , Ultraviolet Rays , Virus Inactivation/drug effects , Virus Inactivation/radiation effects