Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nature ; 603(7899): 25-27, 2022 03.
Article in English | MEDLINE | ID: covidwho-1730273

Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Clinical Trials as Topic , Drug Repositioning , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/economics , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/economics , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Drug Combinations , Drug Synergism , Esters/pharmacology , Esters/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Hospitalization , Humans , Hydroxylamines/therapeutic use , Internationality , Lactams/therapeutic use , Leucine/therapeutic use , Mice , National Institutes of Health (U.S.)/organization & administration , Nitriles/therapeutic use , Peptide Elongation Factor 1/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Proline/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors
2.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1675572

ABSTRACT

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Subject(s)
Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Administration, Topical , Androgens/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Epithelial Cells , Esters/pharmacology , Gene Expression , Goblet Cells/immunology , Goblet Cells/metabolism , Guanidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Serine Endopeptidases/genetics , Signal Transduction , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Glycoconj J ; 39(2): 261-290, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1626176

ABSTRACT

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Esters/pharmacology , Galactose , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , SARS-CoV-2
4.
Biomed Res Int ; 2022: 1558860, 2022.
Article in English | MEDLINE | ID: covidwho-1622112

ABSTRACT

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Subject(s)
Fatty Alcohols/pharmacology , SARS-CoV-2/drug effects , Viruses/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cell Line , Chlorocebus aethiops , Esters/pharmacology , Guanidines/pharmacology , Humans , Lipid Metabolism/physiology , Lipids/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
5.
Emerg Microbes Infect ; 11(1): 277-283, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585239

ABSTRACT

The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Virus Replication , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chlorocebus aethiops , Chloroquine/pharmacology , Endocytosis/drug effects , Esters/pharmacology , Guanidines/pharmacology , Humans , Immune Evasion , Lung Neoplasms/pathology , Macrolides/pharmacology , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Vero Cells , Virus Cultivation , Virus Internalization/drug effects , Whole Genome Sequencing
6.
J Virol ; 95(19): e0086121, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1486519

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Subject(s)
Antiviral Agents/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Serine Endopeptidases/pharmacology , Serine Proteases/pharmacology , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/prevention & control , Carcinoma, Squamous Cell , Esters/chemistry , Esters/metabolism , Guanidines/chemistry , Guanidines/metabolism , Humans , Molecular Dynamics Simulation , Mouth Neoplasms , Protein Domains , Sequence Alignment , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteases/chemistry , Serine Proteases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects
7.
J Am Coll Cardiol ; 78(16): 1635-1654, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1454219

ABSTRACT

Coronavirus disease-2019 (COVID-19) is associated with systemic inflammation, endothelial activation, and multiorgan manifestations. Lipid-modulating agents may be useful in treating patients with COVID-19. These agents may inhibit viral entry by lipid raft disruption or ameliorate the inflammatory response and endothelial activation. In addition, dyslipidemia with lower high-density lipoprotein cholesterol and higher triglyceride levels portend worse outcomes in patients with COVID-19. Upon a systematic search, 40 randomized controlled trials (RCTs) with lipid-modulating agents were identified, including 17 statin trials, 14 omega-3 fatty acids RCTs, 3 fibrate RCTs, 5 niacin RCTs, and 1 dalcetrapib RCT for the management or prevention of COVID-19. From these 40 RCTs, only 2 have reported preliminary results, and most others are ongoing. This paper summarizes the ongoing or completed RCTs of lipid-modulating agents in COVID-19 and the implications of these trials for patient management.


Subject(s)
COVID-19/drug therapy , COVID-19/prevention & control , Fatty Acids, Omega-3/therapeutic use , Fibric Acids/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Niacin/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Esters/pharmacology , Esters/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fibric Acids/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipid Regulating Agents/pharmacology , Lipid Regulating Agents/therapeutic use , Niacin/pharmacology , Randomized Controlled Trials as Topic , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/therapeutic use
8.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438673

ABSTRACT

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Esters/chemistry , Esters/pharmacology , Halogenation , Humans , Ibuprofen/analogs & derivatives , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Vero Cells
9.
FASEB J ; 35(6): e21651, 2021 06.
Article in English | MEDLINE | ID: covidwho-1388031

ABSTRACT

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Subject(s)
Acetylcysteine/analogs & derivatives , Amides/pharmacology , Ascorbic Acid/pharmacology , Auranofin/pharmacology , COVID-19 , Disulfides/metabolism , Esters/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/pharmacology , Virus Internalization/drug effects , Acetylcysteine/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/pathology , HEK293 Cells , Humans
10.
J Virol ; 95(21): e0097521, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1361966

ABSTRACT

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike (S) protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ∼5- to 10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2. The substantial ∼5-fold or higher decrease of the half-maximal effective concentrations (EC50s) suggests a plausible treatment strategy based on the combined use of these inhibitors. IMPORTANCE Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the coronavirus disease 2019 (COVID-2019) global pandemic. There are ongoing efforts to uncover effective antiviral agents that could mitigate the severity of the disease by controlling the ensuing viral replication. Promising candidates include small molecules that inhibit the enzymatic activities of host proteins, thus preventing SARS-CoV-2 entry and infection. They include apilimod, an inhibitor of PIKfyve kinase, and camostat mesylate and nafamostat mesylate, inhibitors of TMPRSS2 protease. Our research is significant for having uncovered an unexpected synergism in the effective inhibitory activity of apilimod used together with camostat mesylate or nafamostat mesylate.


Subject(s)
Antiviral Agents/pharmacology , Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , Hydrazones/pharmacology , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Animals , COVID-19/drug therapy , Cell Line, Tumor , Chlorocebus aethiops , Drug Synergism , Humans , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/physiology , Vero Cells , Virus Internalization
11.
mBio ; 12(4): e0097021, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1338834

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Subject(s)
Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/drug therapy , Cells, Cultured , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/drug effects , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/metabolism
12.
Clin Biochem ; 96: 56-62, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1305215

ABSTRACT

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Subject(s)
Blood Specimen Collection/methods , Chromatography, High Pressure Liquid/methods , Esters/blood , Guanidines/blood , Tandem Mass Spectrometry/methods , COVID-19/blood , COVID-19/drug therapy , Enzyme Inhibitors/pharmacology , Esterases/antagonists & inhibitors , Esterases/metabolism , Esters/metabolism , Esters/pharmacology , Guanidines/pharmacology , Humans , Hydrolysis/drug effects , Isoflurophate/chemistry , Isoflurophate/pharmacology , Paraoxon/blood , Paraoxon/chemistry , Paraoxon/pharmacology , Reproducibility of Results , SARS-CoV-2/isolation & purification
13.
Cell Rep ; 36(3): 109415, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1283976

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.


Subject(s)
Angiotensin-Converting Enzyme 2/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , COVID-19/drug therapy , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Humans , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination
14.
EBioMedicine ; 65: 103255, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116567

ABSTRACT

BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Esters/pharmacology , Guanidines/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , HEK293 Cells , Humans , Lung/pathology , Lung/virology , Membrane Proteins/biosynthesis , Molecular Dynamics Simulation , Serine Endopeptidases/biosynthesis , Serine Proteases/biosynthesis , Vero Cells , Virus Activation/drug effects , Virus Internalization/drug effects
15.
Chem Biol Interact ; 338: 109428, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1103757

ABSTRACT

Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 µM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.


Subject(s)
Drug Interactions , Esters/metabolism , Guanidines/metabolism , Serine Proteinase Inhibitors/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Esters/chemistry , Esters/pharmacology , Guanidines/chemistry , Guanidines/pharmacology , Humans , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
16.
Appl Biochem Biotechnol ; 193(6): 1909-1923, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1053100

ABSTRACT

The unprecedented coronavirus SARS-CoV-2 outbreak at Wuhan, China, caused acute respiratory infection to humans. There is no precise vaccine/therapeutic agents available to combat the COVID-19 disease. Some repurposed drugs are saving the life of diseased, but the complete cure is relatively less. Several drug targets have been reported to inhibit the SARS-CoV-2 virus infection, in that TMPRSS2 (transmembrane protease serine 2) is one of the potential targets; inhibiting this protease stops the virus entry into the host human cell. Camostat mesylate, nafamostat, and leupeptin are the drugs, in which the first two drugs are being used for COVID-19 and leupeptin also tested. To consider these drugs as the repurposed drug for COVID-19, it is essential to understand their binding affinity and stability with TMPRSS2. In the present study, we performed the molecular docking and molecular dynamics (MD) simulation of these molecules with the TMPRSS2. The docking study reveals that leupeptin molecule strongly binds with TMPRSS2 protein than the other two drug molecules. The RMSD and RMSF values of MD simulation confirm that leupeptin and the amino acids of TMPRSS2 are very stable than the other two molecules. Furthermore, leupeptin forms interactions with the key amino acids of TMPRSS2 and the same have been maintained during the MD simulations. This structural and dynamical information is useful to evaluate these drugs to be used as repurposed drugs, however, the strong binding profile of leupeptin with TMPRSS2, suggests, it may be considered as a repurposed drug for COVID-19 disease after clinical trial.


Subject(s)
Antiviral Agents/pharmacology , Benzamidines/therapeutic use , COVID-19/drug therapy , Drug Repositioning , Esters/therapeutic use , Guanidines/therapeutic use , Leupeptins/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Serine Endopeptidases/metabolism , Antiviral Agents/therapeutic use , Benzamidines/pharmacology , COVID-19/virology , Esters/pharmacology , Guanidines/pharmacology , Humans , Protein Binding , SARS-CoV-2/drug effects
18.
J Biomol Struct Dyn ; 40(8): 3668-3680, 2022 May.
Article in English | MEDLINE | ID: covidwho-968104

ABSTRACT

Different esters were found potential against microorganisms, and could be a better choice to solve the multidrug resistant (MDR) pathogenic global issue due to their improved biological and pharmacokinetic properties. In this view, several 4-t-butylbenzoyl uridine esters 4-15 with different aliphatic and aromatic groups were synthesized for antimicrobial, physicochemical and biological studies. In vitro antimicrobial tests against nine bacteria and three fungi along with prediction of activity spectra for substances (PASS) indicated promising antifungal functionality of these uridine esters compared to the antibacterial activities. In support of this observation their cytotoxicity and molecular docking studies have been performed against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51). Significant binding affinities were observed against SARS-CoV-2 main protease (7BQY) considering hydroxychloroquine (HCQ) as standard. ADMET predictions were investigated to evaluate their absorption, metabolism and toxic properties. Most of the uridine esters showed better results than that of the HCQ. Overall, the present study might be useful for the development of uridine-based novel MDR antimicrobial and COVID-19 drugs.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases , Esters/chemistry , Esters/pharmacology , Humans , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Uridine/pharmacology
19.
EMBO Mol Med ; 13(1): e13105, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-814824

ABSTRACT

The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Repositioning , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Antiviral Agents/pharmacology , Benzamidines , Drug Repositioning/methods , Esters/pharmacology , Esters/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Guanine/pharmacology , Guanine/therapeutic use , Humans , Indoles/pharmacology , Indoles/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Pyrazines/pharmacology , Pyrazines/therapeutic use , Ribavirin/pharmacology , Ribavirin/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL