Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Pharmacology ; 106(5-6): 244-253, 2021.
Article in English | MEDLINE | ID: covidwho-1206096

ABSTRACT

INTRODUCTION: The SARS-CoV-2 pandemic has led to one of the most critical and boundless waves of publications in the history of modern science. The necessity to find and pursue relevant information and quantify its quality is broadly acknowledged. Modern information retrieval techniques combined with artificial intelligence (AI) appear as one of the key strategies for COVID-19 living evidence management. Nevertheless, most AI projects that retrieve COVID-19 literature still require manual tasks. METHODS: In this context, we pre-sent a novel, automated search platform, called Risklick AI, which aims to automatically gather COVID-19 scientific evidence and enables scientists, policy makers, and healthcare professionals to find the most relevant information tailored to their question of interest in real time. RESULTS: Here, we compare the capacity of Risklick AI to find COVID-19-related clinical trials and scientific publications in comparison with clinicaltrials.gov and PubMed in the field of pharmacology and clinical intervention. DISCUSSION: The results demonstrate that Risklick AI is able to find COVID-19 references more effectively, both in terms of precision and recall, compared to the baseline platforms. Hence, Risklick AI could become a useful alternative assistant to scientists fighting the COVID-19 pandemic.


Subject(s)
Artificial Intelligence/trends , COVID-19/therapy , Data Interpretation, Statistical , Drug Development/trends , Evidence-Based Medicine/trends , Pharmacology/trends , Artificial Intelligence/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Clinical Trials as Topic/statistics & numerical data , Drug Development/statistics & numerical data , Evidence-Based Medicine/statistics & numerical data , Humans , Pharmacology/statistics & numerical data , Registries
3.
Eur J Cancer ; 147: 154-160, 2021 04.
Article in English | MEDLINE | ID: covidwho-1077873

ABSTRACT

The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated infectious coronavirus disease (COVID-19) has posed a unique challenge to medical staff, patients and their families. Patients with cancer, particularly those with haematologic malignancies, have been identified to be at high risk to develop severe COVID-19. Since publication of our previous guideline on evidence-based management of COVID-19 in patients with cancer, research efforts have continued and new relevant data has come to light, maybe most importantly in the field of vaccination studies. Therefore, an update of our guideline on several clinically important topics is warranted. Here, we provide a concise update of evidence-based recommendations for rapid diagnostics, viral shedding, vaccination and therapy of COVID-19 in patients with cancer. This guideline update was prepared by the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology by critically reviewing the currently available data on these topics applying evidence-based medicine criteria.


Subject(s)
COVID-19 Testing/standards , COVID-19 Vaccines/therapeutic use , COVID-19 , Neoplasms , SARS-CoV-2/physiology , Virus Shedding/physiology , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , COVID-19 Testing/methods , Evidence-Based Medicine/standards , Evidence-Based Medicine/statistics & numerical data , Germany/epidemiology , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Hematology/organization & administration , Hematology/standards , Humans , Immunization, Passive/methods , Immunization, Passive/standards , Infectious Disease Medicine/organization & administration , Infectious Disease Medicine/standards , Medical Oncology/organization & administration , Medical Oncology/standards , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy , Neoplasms/virology , SARS-CoV-2/immunology , Societies, Medical/standards , Vaccination/methods , Vaccination/standards
4.
Med Teach ; 43(3): 253-271, 2021 03.
Article in English | MEDLINE | ID: covidwho-1048007

ABSTRACT

BACKGROUND: COVID-19 has fundamentally altered how education is delivered. Gordon et al. previously conducted a review of medical education developments in response to COVID-19; however, the field has rapidly evolved in the ensuing months. This scoping review aims to map the extent, range and nature of subsequent developments, summarizing the expanding evidence base and identifying areas for future research. METHODS: The authors followed the five stages of a scoping review outlined by Arskey and O'Malley. Four online databases and MedEdPublish were searched. Two authors independently screened titles, abstracts and full texts. Included articles described developments in medical education deployed in response to COVID-19 and reported outcomes. Data extraction was completed by two authors and synthesized into a variety of maps and charts. RESULTS: One hundred twenty-seven articles were included: 104 were from North America, Asia and Europe; 51 were undergraduate, 41 graduate, 22 continuing medical education, and 13 mixed; 35 were implemented by universities, 75 by academic hospitals, and 17 by organizations or collaborations. The focus of developments included pivoting to online learning (n = 58), simulation (n = 24), assessment (n = 11), well-being (n = 8), telehealth (n = 5), clinical service reconfigurations (n = 4), interviews (n = 4), service provision (n = 2), faculty development (n = 2) and other (n = 9). The most common Kirkpatrick outcome reported was Level 1, however, a number of studies reported 2a or 2b. A few described Levels 3, 4a, 4b or other outcomes (e.g. quality improvement). CONCLUSIONS: This scoping review mapped the available literature on developments in medical education in response to COVID-19, summarizing developments and outcomes to serve as a guide for future work. The review highlighted areas of relative strength, as well as several gaps. Numerous articles have been written about remote learning and simulation and these areas are ripe for full systematic reviews. Telehealth, interviews and faculty development were lacking and need urgent attention.


Subject(s)
COVID-19/epidemiology , Education, Distance/trends , Education, Medical/trends , Evidence-Based Medicine/statistics & numerical data , Health Personnel/education , Telemedicine/trends , Asia , COVID-19/therapy , Clinical Competence , Europe , Humans , North America , Patient Simulation , Students, Health Occupations/statistics & numerical data
5.
Am J Surg ; 222(2): 431-437, 2021 08.
Article in English | MEDLINE | ID: covidwho-987001

ABSTRACT

BACKGROUND: Reports on emergency surgery performed soon after a COVID-19 infection that are not controlled for premorbid risk-factors show increased 30-day mortality and pulmonary complications. This contributed to a virtual cessation of elective surgery during the pandemic surge. To inform evidence-based guidance on the decisions for surgery during the recovery phase of the pandemic, we compare 30-day outcomes in patients testing positive for COVID-19 before their operation, to contemporary propensity-matched COVID-19 negative patients undergoing the same procedures. METHODS: This prospective multicentre study included all patients undergoing surgery at 170 Veterans Health Administration (VA) hospitals across the United States. COVID-19 positive patients were propensity matched to COVID-19 negative patients on demographic and procedural factors. We compared 30-day outcomes between COVID-19 positive and negative patients, and the effect of time from testing positive to the date of procedure (≤10 days, 11-30 days and >30 days) on outcomes. RESULTS: Between March 1 and August 15, 2020, 449 COVID-19 positive and 51,238 negative patients met inclusion criteria. Propensity matching yielded 432 COVID-19 positive and 1256 negative patients among whom half underwent elective surgery. Infected patients had longer hospital stays (median seven days), higher rates of pneumonia (20.6%), ventilator requirement (7.6%), acute respiratory distress syndrome (ARDS, 17.1%), septic shock (13.7%), and ischemic stroke (5.8%), while mortality, reoperations and readmissions were not significantly different. Higher odds for ventilation and stroke persisted even when surgery was delayed 11-30 days, and for pneumonia, ARDS, and septic shock >30 days after a positive test. DISCUSSION: 30-day pulmonary, septic, and ischaemic complications are increased in COVID-19 positive, compared to propensity score matched negative patients. Odds for several complications persist despite a delay beyond ten days after testing positive. Individualized risk-stratification by pulmonary and atherosclerotic comorbidities should be considered when making decisions for delaying surgery in infected patients.


Subject(s)
COVID-19/complications , Elective Surgical Procedures/adverse effects , Postoperative Complications/epidemiology , Practice Guidelines as Topic , Time-to-Treatment/standards , Aged , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/statistics & numerical data , Clinical Decision-Making/methods , Elective Surgical Procedures/standards , Elective Surgical Procedures/statistics & numerical data , Evidence-Based Medicine/standards , Evidence-Based Medicine/statistics & numerical data , Female , Follow-Up Studies , Hospital Mortality , Hospitals, Veterans/statistics & numerical data , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Propensity Score , Prospective Studies , Risk Assessment/standards , Risk Assessment/statistics & numerical data , SARS-CoV-2/isolation & purification , Time Factors , Time-to-Treatment/statistics & numerical data , United States/epidemiology
6.
BMJ ; 370: m2980, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-691120

ABSTRACT

OBJECTIVE: To compare the effects of treatments for coronavirus disease 2019 (covid-19). DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 1 March 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 12 February 2021 were included in the analysis. STUDY SELECTION: Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. METHODS: After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. RESULTS: 196 trials enrolling 76 767 patients were included; 111 (56.6%) trials and 35 098 (45.72%) patients are new from the previous iteration; 113 (57.7%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, corticosteroids probably reduce death (risk difference 20 fewer per 1000 patients, 95% credible interval 36 fewer to 3 fewer, moderate certainty), mechanical ventilation (25 fewer per 1000, 44 fewer to 1 fewer, moderate certainty), and increase the number of days free from mechanical ventilation (2.6 more, 0.3 more to 5.0 more, moderate certainty). Interleukin-6 inhibitors probably reduce mechanical ventilation (30 fewer per 1000, 46 fewer to 10 fewer, moderate certainty) and may reduce length of hospital stay (4.3 days fewer, 8.1 fewer to 0.5 fewer, low certainty), but whether or not they reduce mortality is uncertain (15 fewer per 1000, 30 fewer to 6 more, low certainty). Janus kinase inhibitors may reduce mortality (50 fewer per 1000, 84 fewer to no difference, low certainty), mechanical ventilation (46 fewer per 1000, 74 fewer to 5 fewer, low certainty), and duration of mechanical ventilation (3.8 days fewer, 7.5 fewer to 0.1 fewer, moderate certainty). The impact of remdesivir on mortality and most other outcomes is uncertain. The effects of ivermectin were rated as very low certainty for all critical outcomes, including mortality. In patients with non-severe disease, colchicine may reduce mortality (78 fewer per 1000, 110 fewer to 9 fewer, low certainty) and mechanical ventilation (57 fewer per 1000, 90 fewer to 3 more, low certainty). Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to reduce risk of death or have an effect on any other patient-important outcome. The certainty in effects for all other interventions was low or very low. CONCLUSION: Corticosteroids and interleukin-6 inhibitors probably confer important benefits in patients with severe covid-19. Janus kinase inhibitors appear to have promising benefits, but certainty is low. Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to have any important benefits. Whether or not remdesivir, ivermectin, and other drugs confer any patient-important benefit remains uncertain. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol is publicly available in the supplementary material. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fourth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiration, Artificial/statistics & numerical data , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Centers for Disease Control and Prevention, U.S./statistics & numerical data , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Databases, Factual/statistics & numerical data , Drug Combinations , Evidence-Based Medicine/methods , Evidence-Based Medicine/statistics & numerical data , Glucocorticoids/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Network Meta-Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Ritonavir/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Standard of Care , Treatment Outcome , United States/epidemiology
7.
Int J Dermatol ; 59(9): 1043-1056, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-625433

ABSTRACT

Recommendations were made recently to limit or stop the use of oral and systemic immunotherapies for skin diseases due to potential risks to the patients during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic. Herein, we attempt to identify potentially safe immunotherapies that may be used in the treatment of cutaneous diseases during the current COVID-19 pandemic. We performed a literature review to approximate the risk of SARS-CoV-2 infection, including available data on the roles of relevant cytokines, cell subsets, and their mediators in eliciting an optimal immune response against respiratory viruses in murine gene deletion models and humans with congenital deficiencies were reviewed for viral infections risk and if possible coronaviruses specifically. Furthermore, reported risk of infections of biologic and non-biologic therapeutics for skin diseases from clinical trials and drug data registries were evaluated. Many of the immunotherapies used in dermatology have data to support their safe use during the COVID-19 pandemic including the biologics that target IgE, IL-4/13, TNF-α, IL-17, IL-12, and IL-23. Furthermore, we provide evidence to show that oral immunosuppressive medications such as methotrexate and cyclosporine do not significantly increase the risk to patients. Most biologic and conventional immunotherapies, based on doses and indications in dermatology, do not appear to increase risk of viral susceptibility and are most likely safe for use during the COVID-19 pandemic. The limitation of this study is availability of data on COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Cytokine Release Syndrome/immunology , Dermatologic Agents/adverse effects , Disease Susceptibility/chemically induced , Pneumonia, Viral/epidemiology , Skin Diseases/drug therapy , Animals , Betacoronavirus/immunology , Biological Products/adverse effects , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Cytokine Release Syndrome/virology , Dermatology/methods , Dermatology/statistics & numerical data , Disease Models, Animal , Disease Susceptibility/immunology , Evidence-Based Medicine/methods , Evidence-Based Medicine/statistics & numerical data , Humans , Immunologic Factors/adverse effects , Mice , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Randomized Controlled Trials as Topic , Risk Assessment , SARS-CoV-2 , Severity of Illness Index , Skin Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL