Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1518611

ABSTRACT

Inhaled nebulized interferon (IFN)-α and IFN-ß have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5'-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3'-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 µM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Interferon-alpha/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Exoribonucleases/genetics , Genetic Vectors , HeLa Cells , Humans , Interferon-alpha/administration & dosage , Luciferases/genetics , Luciferases/metabolism , Naphthyridines/administration & dosage , Naphthyridines/pharmacology , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacology , RNA, Viral/drug effects , Replicon
2.
BMC Genom Data ; 22(1): 48, 2021 11 13.
Article in English | MEDLINE | ID: covidwho-1515435

ABSTRACT

BACKGROUND: This study aims to characterize SARS-CoV-2 mutations which are primarily prevalent in the Cypriot population. Moreover, using computational approaches, we assess whether these mutations are associated with changes in viral virulence. METHODS: We utilize genetic data from 144 sequences of SARS-CoV-2 strains from the Cypriot population obtained between March 2020 and January 2021, as well as all data available from GISAID. We combine this with countries' regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of Cyprus-specific mutations are obtained by mutation tracking analysis. This entails calculating specific mutation frequencies within the Cypriot population and comparing these with their prevalence world-wide throughout the course of the pandemic. We further make use of linear regression models to extrapolate additional information that may be missed through standard statistical analysis. RESULTS: We report a single mutation found in the ORF1ab gene (nucleotide position 18,440) that appears to be significantly enriched within the Cypriot population. The amino acid change is denoted as S6059F, which maps to the SARS-CoV-2 NSP14 protein. We further analyse this mutation using regression models to investigate possible associations with increased deaths and cases per million. Moreover, protein structure prediction tools show that the mutation infers a conformational change to the protein that significantly alters its structure when compared to the reference protein. CONCLUSIONS: Investigating Cyprus-specific mutations for SARS-CoV-2 can lead to a better understanding of viral pathogenicity. Researching these mutations can generate potential links between viral-specific mutations and the unique genomics of the Cypriot population. This can not only lead to important findings from which to battle the pandemic on a national level, but also provide insights into viral virulence worldwide.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/virology , Cyprus , Exoribonucleases/genetics , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1488612

ABSTRACT

Inhaled nebulized interferon (IFN)-α and IFN-ß have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5'-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3'-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 µM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Interferon-alpha/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Exoribonucleases/genetics , Genetic Vectors , HeLa Cells , Humans , Interferon-alpha/administration & dosage , Luciferases/genetics , Luciferases/metabolism , Naphthyridines/administration & dosage , Naphthyridines/pharmacology , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacology , RNA, Viral/drug effects , Replicon
4.
FEBS J ; 288(17): 5130-5147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1388264

ABSTRACT

SARS-CoV-2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS-CoV-2. Nsp14 is a multifunctional protein with two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14-nsp10 complex from SARS-CoV-2. We confirm the 3'-5' exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS-CoV-2 nsp14-nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14-mediated ExoN activity of SARS-CoV-2. We studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS-CoV-2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Drug Design , Exoribonucleases/antagonists & inhibitors , Humans , Multiprotein Complexes/drug effects , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/genetics
5.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1387965

ABSTRACT

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Subject(s)
Biocatalysis , Exoribonucleases/chemistry , Exoribonucleases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Exoribonucleases/genetics , Guanine , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Domains/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
7.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Article in English | MEDLINE | ID: covidwho-1290310

ABSTRACT

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , Protein Binding/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Antiviral Agents/pharmacology , Binding Sites/genetics , COVID-19/virology , Humans , Methylation , Pandemics , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Virus Replication/genetics
8.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1289949

ABSTRACT

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/antagonists & inhibitors , Methyltransferases/antagonists & inhibitors , RNA Caps/metabolism , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Chlorobenzenes/pharmacology , Chlorocebus aethiops , Enzyme Assays , Exoribonucleases/genetics , Exoribonucleases/isolation & purification , Exoribonucleases/metabolism , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Indazoles/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Methyltransferases/genetics , Methyltransferases/isolation & purification , Methyltransferases/metabolism , Nitriles/pharmacology , Phenothiazines/pharmacology , Purines/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Substrate Specificity , Trifluperidol/pharmacology , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/isolation & purification , Viral Regulatory and Accessory Proteins/metabolism
9.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1240208

ABSTRACT

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/genetics , Exoribonucleases/genetics , Methyltransferases/genetics , SARS-CoV-2/genetics , Amino Acid Sequence , COVID-19/virology , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , Sequence Alignment , Transcription, Genetic/genetics , Virus Replication/genetics
10.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1217861

ABSTRACT

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Subject(s)
Biocatalysis , Exoribonucleases/chemistry , Exoribonucleases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Exoribonucleases/genetics , Guanine , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Domains/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
11.
J Virol ; 94(16)2020 07 30.
Article in English | MEDLINE | ID: covidwho-1214962

ABSTRACT

The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.


Subject(s)
Exoribonucleases/metabolism , Interferon Type I/biosynthesis , Interferons/biosynthesis , Porcine epidemic diarrhea virus/physiology , RNA Caps/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Cell Line , Chlorocebus aethiops , Exoribonucleases/genetics , Gene Expression , Guanine/metabolism , Immunity, Innate , Methylation , Mutation , Porcine epidemic diarrhea virus/enzymology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/pathogenicity , RNA, Viral/metabolism , S-Adenosylmethionine/metabolism , Swine , Vero Cells , Viral Nonstructural Proteins/genetics , Virus Replication
12.
SLAS Discov ; 26(6): 766-774, 2021 07.
Article in English | MEDLINE | ID: covidwho-1192708

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Exonucleases/antagonists & inhibitors , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Enzyme Assays , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Exonucleases/genetics , Exonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
13.
J Med Virol ; 93(7): 4258-4264, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1173823

ABSTRACT

The recent coronavirus disease 2019 (COVID-19), causing a global pandemic with devastating effects on healthcare and social-economic systems, has no special antiviral therapies available for human coronaviruses (CoVs). The severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) possesses a nonstructural protein (nsp14), with amino-terminal domain coding for proofreading exoribonuclease (ExoN) that is required for high-fidelity replication. The ability of CoVs during genome replication and transcription to proofread and exclude mismatched nucleotides has long hindered the development of anti-CoV drugs. The resistance of SARS-CoV-2 to antivirals, especially nucleoside analogs (NAs), shows the need to identify new CoV inhibition targets. Therefore, this review highlights the importance of nsp14-ExoN as a target for inhibition. Also, nucleoside analogs could be used in combination with existing anti-CoV therapeutics to target the proofreading mechanism.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Exoribonucleases/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects , Exoribonucleases/drug effects , Exoribonucleases/metabolism , Genome, Viral/genetics , Humans , Methyltransferases/genetics , RNA Processing, Post-Transcriptional/physiology , RNA, Viral/genetics , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/drug effects , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
14.
Infect Genet Evol ; 92: 104831, 2021 08.
Article in English | MEDLINE | ID: covidwho-1164209

ABSTRACT

Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global pandemic with alarming speed, comprehensively analyzing the mutation and evolution of early SARS-CoV-2 strains contributes to detect and prevent such virus. Here, we explored 1962 high-quality genomes of early SARS-CoV-2 strains obtained from 42 countries before April 2020. The changing trends of genetic variations in SARS-CoV-2 strains over time and country were subsequently identified. In addition, viral genotype mapping and phylogenetic analysis were performed to identify the variation features of SARS-CoV-2. Results showed that 57.89% of genetic variations involved in ORF1ab, most of which (68.85%) were nonsynonymous. Haplotype maps and phylogenetic tree analysis showed that amino acid variations in ORF1ab (p.5828P > L and p.5865Y > C, also NSP13: P504L and NSP13: Y541C) were the important characteristics of such clade. Furthermore, these variants showed more significant aggregation in the United States (P = 2.92E-66, 95%) than in Australia or Canada, especially in strains from Washington State (P = 1.56E-23, 77.65%). Further analysis demonstrated that the report date of the variants was associated with the date of increased infections and the date of recovery and fatality rate change in the United States. More importantly, the fatality rate in Washington State was higher (4.13%) and showed poorer outcomes (P = 4.12E-21 in fatality rate, P = 3.64E-29 in death and recovered cases) than found in other states containing a small proportion of strains with such variants. Using sequence alignment, we found that variations at the 504 and 541 sites had functional effects on NSP13. In this study, we comprehensively analyzed genetic variations in SARS-CoV-2, gaining insights into amino acid variations in ORF1ab and COVID-19 outcomes.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Exoribonucleases/genetics , Genetic Variation , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Genome, Viral , Genotype , Humans , Methyltransferases , RNA Helicases
15.
SLAS Discov ; 26(6): 749-756, 2021 07.
Article in English | MEDLINE | ID: covidwho-1136206

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5' end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3'-5' exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , Nitro Compounds/pharmacology , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Thiazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Drug Repositioning , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Mass Spectrometry/methods , Methylation , Nitro Compounds/chemistry , Prescription Drugs/chemistry , Prescription Drugs/pharmacology , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiazoles/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
16.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Article in English | MEDLINE | ID: covidwho-1065145

ABSTRACT

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Exoribonucleases/antagonists & inhibitors , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/virology , Catalytic Domain , Computer Simulation , Drug Evaluation, Preclinical , Drug Synergism , Drug Therapy, Combination , Exoribonucleases/chemistry , Exoribonucleases/genetics , Genome, Viral/drug effects , Humans , Molecular Dynamics Simulation , Pandemics , Ritonavir/administration & dosage , Ritonavir/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
17.
PLoS Pathog ; 17(1): e1009226, 2021 01.
Article in English | MEDLINE | ID: covidwho-1034956

ABSTRACT

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.


Subject(s)
COVID-19/drug therapy , Coronavirus Infections/drug therapy , Exoribonucleases/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus Infections/virology , Exoribonucleases/genetics , Humans , Recombination, Genetic/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/genetics , Virus Replication/genetics
18.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Article in English | MEDLINE | ID: covidwho-987985

ABSTRACT

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Exoribonucleases/antagonists & inhibitors , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/virology , Catalytic Domain , Computer Simulation , Drug Evaluation, Preclinical , Drug Synergism , Drug Therapy, Combination , Exoribonucleases/chemistry , Exoribonucleases/genetics , Genome, Viral/drug effects , Humans , Molecular Dynamics Simulation , Pandemics , Ritonavir/administration & dosage , Ritonavir/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
19.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: covidwho-975641

ABSTRACT

Coronaviruses (CoVs) stand out for their large RNA genome and complex RNA-synthesizing machinery comprising 16 nonstructural proteins (nsps). The bifunctional nsp14 contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) domains. While the latter presumably supports mRNA capping, ExoN is thought to mediate proofreading during genome replication. In line with such a role, ExoN knockout mutants of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) were previously reported to have crippled but viable hypermutation phenotypes. Remarkably, using reverse genetics, a large set of corresponding ExoN knockout mutations has now been found to be lethal for another betacoronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). For 13 mutants, viral progeny could not be recovered, unless-as happened occasionally-reversion had first occurred. Only a single mutant was viable, likely because its E191D substitution is highly conservative. Remarkably, a SARS-CoV-2 ExoN knockout mutant was found to be unable to replicate, resembling observations previously made for alpha- and gammacoronaviruses, but starkly contrasting with the documented phenotype of ExoN knockout mutants of the closely related SARS-CoV. Subsequently, we established in vitro assays with purified recombinant MERS-CoV nsp14 to monitor its ExoN and N7-MTase activities. All ExoN knockout mutations that proved lethal in reverse genetics were found to severely decrease ExoN activity while not affecting N7-MTase activity. Our study strongly suggests that CoV nsp14 ExoN has an additional function, which apparently is critical for primary viral RNA synthesis and thus differs from the proofreading function that, based on previous MHV and SARS-CoV studies, was proposed to boost longer-term replication fidelity.IMPORTANCE The bifunctional nsp14 subunit of the coronavirus replicase contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase domains. For the betacoronaviruses MHV and SARS-CoV, ExoN was reported to promote the fidelity of genome replication, presumably by mediating a form of proofreading. For these viruses, ExoN knockout mutants are viable while displaying an increased mutation frequency. Strikingly, we have now established that the equivalent ExoN knockout mutants of two other betacoronaviruses, MERS-CoV and SARS-CoV-2, are nonviable, suggesting an additional and critical ExoN function in their replication. This is remarkable in light of the very limited genetic distance between SARS-CoV and SARS-CoV-2, which is highlighted, for example, by 95% amino acid sequence identity in their nsp14 sequences. For (recombinant) MERS-CoV nsp14, both its enzymatic activities were evaluated using newly developed in vitro assays that can be used to characterize these key replicative enzymes in more detail and explore their potential as target for antiviral drug development.


Subject(s)
Betacoronavirus/physiology , Exoribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Betacoronavirus/enzymology , Betacoronavirus/genetics , Catalytic Domain , Cell Line , Exoribonucleases/chemistry , Exoribonucleases/genetics , Fluorouracil/pharmacology , Gene Knockout Techniques , Genome, Viral , Humans , Methylation , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , RNA, Viral/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Plaque Assay , Zinc Fingers
20.
Proc Natl Acad Sci U S A ; 117(49): 31519-31526, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-933770

ABSTRACT

Genome-wide epistasis analysis is a powerful tool to infer gene interactions, which can guide drug and vaccine development and lead to deeper understanding of microbial pathogenesis. We have considered all complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) repository until four different cutoff dates, and used direct coupling analysis together with an assumption of quasi-linkage equilibrium to infer epistatic contributions to fitness from polymorphic loci. We find eight interactions, of which three are between pairs where one locus lies in gene ORF3a, both loci holding nonsynonymous mutations. We also find interactions between two loci in gene nsp13, both holding nonsynonymous mutations, and four interactions involving one locus holding a synonymous mutation. Altogether, we infer interactions between loci in viral genes ORF3a and nsp2, nsp12, and nsp6, between ORF8 and nsp4, and between loci in genes nsp2, nsp13, and nsp14. The paper opens the prospect to use prominent epistatically linked pairs as a starting point to search for combinatorial weaknesses of recombinant viral pathogens.


Subject(s)
Epistasis, Genetic/genetics , Genes, Viral/genetics , SARS-CoV-2/genetics , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Exoribonucleases/genetics , Genome, Viral/genetics , Humans , Methyltransferases/genetics , RNA Helicases/genetics , Selection, Genetic/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...