Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Drug Discov Ther ; 16(3): 139-141, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1822564

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high rate of transmission and it exhibits immune escape characteristics. N-acetyl-L-cysteine (NAC) is a precursor of reduced glutathione (GSH), which can enter cells to play an antioxidant role, so it is better than glutathione. Patients tolerate NAC well, and adverse reactions are rare and mild, so this type of drug with multiple actions is considered to be a mucolytic agent as well as a drug for the prevention/treatment of various diseases, including COVID-19. Previous studies indicated that the clinical effectiveness of NAC is dose-dependent. Low-dose NAC (0.2 g tid for adults) is a mucolytic expectorant, high-dose NAC (0.6 g bid or tid) has expectorant action as well as antioxidant action, and extreme-dose NAC (300 mg/kg.d) is used for detoxification in cases of an acetaminophen overdose. Presumably, orally administered high-dose NAC (0.6 g tid for adults and 10 mg/kg tid for children) could be used as an adjuvant to treat an Omicron infection. It should reduce the time to negative conversion and prevent severe COVID-19, reducing the duration of hospitalization and increasing the bed turnover rate.


Subject(s)
Acetylcysteine , COVID-19 , Acetylcysteine/therapeutic use , Antioxidants/therapeutic use , COVID-19/drug therapy , Expectorants/therapeutic use , Glutathione , Humans , SARS-CoV-2
2.
PLoS One ; 16(3): e0248132, 2021.
Article in English | MEDLINE | ID: covidwho-1127793

ABSTRACT

BACKGROUND: COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. METHODS AND FINDINGS: We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. CONCLUSIONS: No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178787.


Subject(s)
COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Bromhexine/therapeutic use , COVID-19/drug therapy , COVID-19/mortality , Clinical Trials as Topic , Expectorants/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Respiration, Artificial , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome
3.
Eur Rev Med Pharmacol Sci ; 24(22): 11971-11976, 2020 11.
Article in English | MEDLINE | ID: covidwho-962033

ABSTRACT

OBJECTIVE: This paper presents a newborn (G2P2, gestational age of 39+6 weeks, birth weight of 3,200 g, with normal fetal amniotic fluid) with suspected coronavirus disease 2019 (COVID-19) admitted to our hospital on February 10, 2020, at the birth age of 16 hours and 34 minutes. The Apgar scores at 1 and 5 min were 9 and 10 points, respectively. PATIENTS AND METHODS: The mother of the newborn was exposed to a patient with COVID-19 five days before delivery. The newborn had nausea and vomiting after birth, with feeding intolerance, and full enteral feeding was given on the 6th day after birth. The newborn was in good general condition during the period of hospitalization. RESULTS: The two 2019-nCoV nucleic acid tests of the newborn were negative on the 5th and 7th days after birth. On the 1st and 8th days after birth, typical pulmonary lesions were detected in the newborn by chest CT. Our study supports that chest imaging examination should be actively performed in the newborn even with a negative 2019-nCoV nucleic acid test in cases where a pregnant woman is exposed to a patient with COVID-19 or is confirmed with 2019-nCoV infection. CONCLUSIONS: For newborns with typical pulmonary lesions, strict quarantine measures are suggested if the possibility of COVID-19 cannot be excluded.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Maternal Exposure , Nausea/physiopathology , Pregnancy Complications, Infectious/diagnosis , Tomography, X-Ray Computed , Vomiting/physiopathology , Ambroxol , Anti-Bacterial Agents/therapeutic use , Ascorbic Acid/therapeutic use , Breast Feeding , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/therapy , Expectorants/therapeutic use , Female , Humans , Infant, Newborn , Male , Parenteral Nutrition , Pregnancy , Serum Amyloid A Protein/metabolism , Vitamins/therapeutic use
4.
Med Hypotheses ; 143: 110066, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-625121

ABSTRACT

The COVID-19 pandemic has not spared any continent. The disease has affected more than 7,500,000 individuals globally and killed approximately 450,000 individuals. The disease is caused by a very small virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an enveloped single-stranded RNA virus with a spike-like structure on its envelope that can interact with the angiotensin-converting enzyme 2 (ACE2) receptor after cleavage. ACE2 receptors are present in the human lungs and other organs. SARS-CoV-2 is a new virus that belongs to the subgenus Sarbecovirus; viruses in this subgenus have spread widely in the previous years and caused outbreaks of severe acute respiratory syndromes.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Models, Immunological , Pneumonia, Viral/immunology , Ageusia/etiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Expectorants/therapeutic use , Host Microbial Interactions/immunology , Humans , Hypersensitivity/immunology , Hypersensitivity/virology , Mucus/metabolism , Olfaction Disorders/etiology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2 , SOXB1 Transcription Factors/metabolism
5.
Intern Emerg Med ; 15(5): 801-812, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-378214

ABSTRACT

Of huge importance now is to provide a fast, cost-effective, safe, and immediately available pharmaceutical solution to curb the rapid global spread of SARS-CoV-2. Recent publications on SARS-CoV-2 have brought attention to the possible benefit of chloroquine in the treatment of patients infected by SARS-CoV-2. Whether chloroquine can treat SARS-CoV-2 alone and also work as a prophylactic is doubtful. An effective prophylactic medication to prevent viral entry has to contain, at least, either a protease inhibitor or a competitive virus ACE2-binding inhibitor. Using bromhexine at a dosage that selectively inhibits TMPRSS2 and, in so doing, inhibits TMPRSS2-specific viral entry is likely to be effective against SARS-CoV-2. We propose the use of bromhexine as a prophylactic and treatment. We encourage the scientific community to assess bromhexine clinically as a prophylactic and curative treatment. If proven to be effective, this would allow a rapid, accessible, and cost-effective application worldwide.


Subject(s)
Bromhexine/therapeutic use , Coronavirus Infections/drug therapy , Expectorants/therapeutic use , Pneumonia, Viral/drug therapy , Serine Endopeptidases/drug effects , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Virus Internalization/drug effects
7.
J Allergy Clin Immunol Pract ; 8(6): 1798-1801, 2020 06.
Article in English | MEDLINE | ID: covidwho-72194
SELECTION OF CITATIONS
SEARCH DETAIL