Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580557

ABSTRACT

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Subject(s)
Interleukin-6/metabolism , Lamiaceae/chemistry , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Transcription Factor RelA/metabolism , Animals , Ethanol/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
2.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1538383

ABSTRACT

Dendritic cells (DCs) are the most potent antigen-presenting cells, and their function is essential to configure adaptative immunity and avoid excessive inflammation. DCs are predicted to play a crucial role in the clinical evolution of the infection by the severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. DCs interaction with the SARS-CoV-2 Spike protein, which mediates cell receptor binding and subsequent fusion of the viral particle with host cell, is a key step to induce effective immunity against this virus and in the S protein-based vaccination protocols. Here we evaluated human DCs in response to SARS-CoV-2 S protein, or to a fragment encompassing the receptor binding domain (RBD) challenge. Both proteins increased the expression of maturation markers, including MHC molecules and costimulatory receptors. DCs interaction with the SARS-CoV-2 S protein promotes activation of key signaling molecules involved in inflammation, including MAPK, AKT, STAT1, and NFκB, which correlates with the expression and secretion of distinctive proinflammatory cytokines. Differences in the expression of ACE2 along the differentiation of human monocytes to mature DCs and inter-donor were found. Our results show that SARS-CoV-2 S protein promotes inflammatory response and provides molecular links between individual variations and the degree of response against this virus.


Subject(s)
Dendritic Cells/pathology , Dendritic Cells/virology , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cytokines/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/pathology , Lectins, C-Type/metabolism , Protein Domains , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cell Surface/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Tissue Donors
3.
Cells ; 10(4)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1232577

ABSTRACT

Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1-ERK1/2-AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.


Subject(s)
Gene Expression Regulation , Neovascularization, Physiologic/genetics , Thrombin/pharmacology , Transcription, Genetic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Humans , Microvessels/pathology , Neovascularization, Physiologic/drug effects , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-jun/metabolism , Receptor, PAR-1/metabolism , Transcription Factor AP-1/metabolism , Vascular Endothelial Growth Factor A/genetics
4.
Arch Virol ; 166(3): 675-696, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064514

ABSTRACT

The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.


Subject(s)
COVID-19/pathology , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS-CoV-2/metabolism , Signal Transduction/physiology , COVID-19/drug therapy , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/pathology , Middle East Respiratory Syndrome Coronavirus/drug effects , NF-kappa B/metabolism , SARS-CoV-2/drug effects , Tumor Necrosis Factor-alpha/metabolism
5.
EBioMedicine ; 58: 102898, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-665940

ABSTRACT

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Subject(s)
Aldehyde-Lyases/metabolism , Epirubicin/administration & dosage , Sepsis/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Autophagy , Cell Membrane Permeability , Cells, Cultured , Disease Models, Animal , Down-Regulation , Epirubicin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mucin-1/metabolism , Prospective Studies , Pulmonary Surfactant-Associated Protein D/metabolism , Random Allocation , Sepsis/etiology , Sepsis/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL