Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1759583

ABSTRACT

Severe acute lung injury has few treatment options and a high mortality rate. Upon injury, neutrophils infiltrate the lungs and form neutrophil extracellular traps (NETs), damaging the lungs and driving an exacerbated immune response. Unfortunately, no drug preventing NET formation has completed clinical development. Here, we report that disulfiram - an FDA-approved drug for alcohol use disorder - dramatically reduced NETs, increased survival, improved blood oxygenation, and reduced lung edema in a transfusion-related acute lung injury (TRALI) mouse model. We then tested whether disulfiram could confer protection in the context of SARS-CoV-2 infection, as NETs are elevated in patients with severe COVID-19. In SARS-CoV-2-infected golden hamsters, disulfiram reduced NETs and perivascular fibrosis in the lungs, and it downregulated innate immune and complement/coagulation pathways, suggesting that it could be beneficial for patients with COVID-19. In conclusion, an existing FDA-approved drug can block NET formation and improve disease course in 2 rodent models of lung injury for which treatment options are limited.


Subject(s)
Acute Lung Injury/drug therapy , COVID-19/complications , Disulfiram/pharmacology , Extracellular Traps/drug effects , Lung/immunology , SARS-CoV-2 , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Acute Lung Injury/etiology , Animals , COVID-19/virology , Disease Models, Animal , Extracellular Traps/immunology , Rodentia
2.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1674671

ABSTRACT

Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.


Subject(s)
Blood Proteins/isolation & purification , Heparin/pharmacology , /drug therapy , Blood Coagulation/physiology , Blood Platelets/metabolism , Blood Proteins/metabolism , COVID-19/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism , HMGB Proteins/isolation & purification , HMGB Proteins/metabolism , HMGB1 Protein/isolation & purification , HMGB1 Protein/metabolism , Heparin/metabolism , Histones/isolation & purification , Histones/metabolism , Humans , Neutrophils/metabolism , Platelet Activation/immunology , Platelet Factor 4/isolation & purification , Platelet Factor 4/metabolism , SARS-CoV-2/pathogenicity , Sepsis/blood , Sepsis/metabolism , Thromboplastin/metabolism , Thrombosis/drug therapy
3.
Cell Mol Life Sci ; 79(2): 94, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1653404

ABSTRACT

Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.


Subject(s)
Autoimmune Diseases/pathology , Citrullination/physiology , Inflammation/pathology , Protein Processing, Post-Translational/physiology , Protein-Arginine Deiminases/metabolism , COVID-19/pathology , Citrulline/biosynthesis , Energy Metabolism/physiology , Extracellular Traps/immunology , Gene Expression Regulation/genetics , Humans , Neoplasms/pathology , SARS-CoV-2/immunology , Thromboembolism/pathology
4.
Int Immunopharmacol ; 104: 108516, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1611782

ABSTRACT

Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1ß loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.


Subject(s)
Acute Lung Injury/immunology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Extracellular Traps/immunology , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Immunity, Innate/drug effects , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Neutrophil Infiltration/drug effects , Phosphate-Binding Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/antagonists & inhibitors , Pore Forming Cytotoxic Proteins/metabolism , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Protein-Arginine Deiminase Type 4/metabolism , SARS-CoV-2/immunology
5.
Br J Haematol ; 196(5): 1159-1169, 2022 03.
Article in English | MEDLINE | ID: covidwho-1583669

ABSTRACT

COVID-19 has compelled scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors, such as older age, obesity, and diabetes mellitus, suggest a central role of endothelial cells (ECs), autopsies have revealed clots in the pulmonary microvasculature that are rich in neutrophils and DNA traps produced by these cells, called neutrophil extracellular traps (NETs.) Submicron extracellular vesicles, called microparticles (MPs), are described in several diseases as being involved in pro-inflammatory pathways. Therefore, in this study, we analyzed three patient groups: one for which intubation was not necessary, an intubated group, and one group after extubation. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell (EC)-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered EC death and overexpression of two adhesion molecules: P-selectin and vascular cell adhesion molecule-1 (VCAM-1). Strikingly, neutrophil adhesion and NET production were increased following incubation with these ECs. Importantly, we also found that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein, annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Taken together, our results reveal that MPs play a key role in COVID-19 pathophysiology and point to a potential therapeutic: annexin A5.


Subject(s)
COVID-19/immunology , Cell-Derived Microparticles/immunology , Endothelial Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/therapy , Cell Adhesion , Cell Death , Cell-Derived Microparticles/pathology , Cells, Cultured , Endothelial Cells/pathology , Extracellular Traps/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Intubation , Neutrophils/pathology , Phosphatidylserines/immunology
6.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1575230

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single-cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS, compared with those with non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps. Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Subject(s)
COVID-19/immunology , Extracellular Traps/immunology , Neutrophil Activation , Neutrophils/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Male , Middle Aged , Neutrophils/pathology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Respiratory Distress Syndrome/pathology , Severity of Illness Index
7.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1555185

ABSTRACT

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/blood , Case-Control Studies , Cohort Studies , Cytokines/blood , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Glycogen Phosphorylase, Liver Form/blood , Granulocytes/immunology , Granulocytes/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Middle Aged , Neutrophil Activation , Peroxidase/blood , Respiratory Burst , Severity of Illness Index
8.
Blood ; 139(8): 1222-1233, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1528672

ABSTRACT

The newly identified 13-series (T-series) resolvins (RvTs) regulate phagocyte functions and accelerate resolution of infectious inflammation. Because severe acute respiratory syndrome coronavirus 2 elicits uncontrolled inflammation involving neutrophil extracellular traps (NETs), we tested whether stereochemically defined RvTs regulate NET formation. Using microfluidic devices capturing NETs in phorbol 12-myristate 13-acetate-stimulated human whole blood, the RvTs (RvT1-RvT4; 2.5 nM each) potently reduced NETs. With interleukin-1ß-stimulated human neutrophils, each RvT dose and time dependently decreased NETosis, conveying ∼50% potencies at 10 nM, compared with a known NETosis inhibitor (10 µM). In a murine Staphylococcus aureus infection, RvTs (50 ng each) limited neutrophil infiltration, bacterial titers, and NETs. In addition, each RvT enhanced NET uptake by human macrophages; RvT2 was the most potent of the four RvTs, giving a >50% increase in NET-phagocytosis. As part of the intracellular signaling mechanism, RvT2 increased cyclic adenosine monophosphate and phospho-AMP-activated protein kinase (AMPK) within human macrophages, and RvT2-stimulated NET uptake was abolished by protein kinase A and AMPK inhibition. RvT2 also stimulated NET clearance by mouse macrophages in vivo. Together, these results provide evidence for novel pro-resolving functions of RvTs, namely reducing NETosis and enhancing macrophage NET clearance via a cyclic adenosine monophosphate-protein kinase A-AMPK axis. Thus, RvTs open opportunities for regulating NET-mediated collateral tissue damage during infection as well as monitoring NETs.


Subject(s)
Extracellular Traps/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , COVID-19/immunology , Humans , Inflammation/immunology , Macrophages/immunology , Mice , Neutrophils/immunology , Phagocytosis , SARS-CoV-2/immunology
9.
Front Immunol ; 12: 689866, 2021.
Article in English | MEDLINE | ID: covidwho-1503883

ABSTRACT

Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.


Subject(s)
Immunity, Innate/immunology , Neutrophils/immunology , Pneumonia/immunology , Biomarkers/blood , COVID-19/immunology , Cell Degranulation/immunology , Chemokines/immunology , Clinical Trials as Topic , Extracellular Traps/immunology , Humans , Integrins/immunology , Lung/immunology , Lung/pathology , Neutrophils/drug effects , Pneumonia/diagnosis , Pneumonia/drug therapy , Receptors, Pattern Recognition/immunology , Respiratory Burst/immunology , SARS-CoV-2 , Thromboembolism/immunology
10.
Int J Mol Sci ; 22(14)2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1502438

ABSTRACT

Neutrophils form sticky web-like structures known as neutrophil extracellular traps (NETs) as part of innate immune response. NETs are decondensed extracellular chromatin filaments comprising nuclear and cytoplasmic proteins. NETs have been implicated in many gastrointestinal diseases including colorectal cancer (CRC). However, the regulatory mechanisms of NET formation and potential pharmacological inhibitors in the context of CRC have not been thoroughly discussed. In this review, we intend to highlight roles of NETs in CRC progression and metastasis as well as the potential of targeting NETs during colon cancer therapy.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Extracellular Traps/immunology , Neutrophils/immunology , Neutrophils/pathology , Animals , Disease Progression , Extracellular Traps/physiology , Humans , Neoplasm Metastasis/immunology
11.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: covidwho-1458477

ABSTRACT

The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.


Subject(s)
Embolism/immunology , Extracellular Traps/physiology , Thrombosis/immunology , Animals , Body Fluids/immunology , Body Fluids/physiology , Embolism/physiopathology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Humans , Inflammation/pathology , Neutrophils/immunology , Prospective Studies , Thrombosis/physiopathology
12.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1443788

ABSTRACT

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , /immunology , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
13.
Front Immunol ; 12: 689966, 2021.
Article in English | MEDLINE | ID: covidwho-1441106

ABSTRACT

Background: Most of the explanatory and prognostic models of COVID-19 lack of a comprehensive assessment of the wide COVID-19 spectrum of abnormalities. The aim of this study was to unveil novel biological features to explain COVID-19 severity and prognosis (death and disease progression). Methods: A predictive model for COVID-19 severity in 121 patients was constructed by ordinal logistic regression calculating odds ratio (OR) with 95% confidence intervals (95% CI) for a set of clinical, immunological, metabolomic, and other biological traits. The accuracy and calibration of the model was tested with the area under the curve (AUC), Somer's D, and calibration plot. Hazard ratios with 95% CI for adverse outcomes were calculated with a Cox proportional-hazards model. Results: The explanatory variables for COVID-19 severity were the body mass index (BMI), hemoglobin, albumin, 3-Hydroxyisovaleric acid, CD8+ effector memory T cells, Th1 cells, low-density granulocytes, monocyte chemoattractant protein-1, plasma TRIM63, and circulating neutrophil extracellular traps. The model showed an outstanding performance with an optimism-adjusted AUC of 0.999, and Somer's D of 0.999. The predictive variables for adverse outcomes in COVID-19 were severe and critical disease diagnosis, BMI, lactate dehydrogenase, Troponin I, neutrophil/lymphocyte ratio, serum levels of IP-10, malic acid, 3, 4 di-hydroxybutanoic acid, citric acid, myoinositol, and cystine. Conclusions: Herein, we unveil novel immunological and metabolomic features associated with COVID-19 severity and prognosis. Our models encompass the interplay among innate and adaptive immunity, inflammation-induced muscle atrophy and hypoxia as the main drivers of COVID-19 severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Adult , Blood Coagulation , Body Mass Index , COVID-19/blood , COVID-19/immunology , COVID-19/metabolism , Cytokines/blood , Extracellular Traps/immunology , Female , Hemoglobins/analysis , Humans , Male , Metabolome , Middle Aged , Muscular Atrophy , Neutrophils/immunology , Phenotype , Prognosis , Serum Albumin, Human/analysis , T-Lymphocytes/immunology , Valerates/blood
14.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438528

ABSTRACT

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Subject(s)
Autoimmunity , COVID-19/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunity, Humoral , Inflammation , Neutrophils/immunology , Antibodies, Antinuclear , Antimicrobial Cationic Peptides/blood , Autoantibodies/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/pharmacology , Flow Cytometry , Granulocytes/metabolism , HMGB1 Protein/blood , Healthy Volunteers , Humans , Microscopy, Confocal , Monocytes/cytology , Neutrophils/cytology , SARS-CoV-2 , Ubiquitins/pharmacology
15.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
16.
Int J Med Sci ; 18(3): 846-851, 2021.
Article in English | MEDLINE | ID: covidwho-1389719

ABSTRACT

In the last 50 years we have experienced two big pandemics, the HIV pandemic and the pandemic caused by SARS-CoV-2. Both pandemics are caused by RNA viruses and have reached us from animals. These two viruses are different in the transmission mode and in the symptoms they generate. However, they have important similarities: the fear in the population, increase in proinflammatory cytokines that generate intestinal microbiota modifications or NETosis production by polymorphonuclear neutrophils, among others. They have been implicated in the clinical, prognostic and therapeutic attitudes.


Subject(s)
COVID-19/epidemiology , HIV Infections/epidemiology , HIV-1/pathogenicity , Pandemics/history , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/psychology , COVID-19/transmission , Cytokines/blood , Cytokines/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Fear , Global Burden of Disease/statistics & numerical data , HIV Infections/immunology , HIV Infections/psychology , HIV Infections/transmission , HIV-1/immunology , HIV-1/isolation & purification , History, 20th Century , History, 21st Century , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/blood , Inflammation Mediators/immunology , Mortality , Neutrophils/immunology , Neutrophils/metabolism , Pandemics/statistics & numerical data , Prognosis , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
17.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1389386

ABSTRACT

Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient's immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.


Subject(s)
Autoimmune Diseases/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Aortic Aneurysm, Abdominal/pathology , Autoimmune Diseases/pathology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/pathology , Humans , Neutrophil Activation/immunology , Plaque, Atherosclerotic/pathology , Thrombosis/pathology
18.
J Leukoc Biol ; 111(3): 725-734, 2022 03.
Article in English | MEDLINE | ID: covidwho-1380391

ABSTRACT

Following on from the devastating spread of COVID-19, a major global priority has been the production, procurement, and distribution of effective vaccines to ensure that the global pandemic reaches an end. However, concerns were raised about worrying side effects, particularly the occurrence of thrombosis and thrombocytopenia after administration of the Oxford/AstraZeneca and Johnson & Johnson's Janssen COVID-19 vaccine, in a phenomenon being termed vaccine-induced thrombotic thrombocytopenia (VITT). Similar to heparin-induced thrombocytopenia (HIT), this condition has been associated with the development of anti-platelet factor 4 antibodies, purportedly leading to neutrophil-platelet aggregate formation. Although thrombosis has also been a common association with COVID-19, the precise molecular mechanisms governing its occurrence are yet to be established. Recently, increasing evidence highlights the NLRP3 (NOD-like, leucine-rich repeat domains, and pyrin domain-containing protein) inflammasome complex along with IL-1ß and effete neutrophils producing neutrophil extracellular traps (NETs) through NETosis. Herein, we propose and discuss that perhaps the incidence of VITT may be due to inflammatory reactions mediated via IL-1ß/NLRP3 inflammasome activation and consequent overproduction of NETs, where similar autoimmune mechanisms are observed in HIT. We also discuss avenues by which such modalities could be treated to prevent the occurrence of adverse events and ensure vaccine rollouts remain safe and on target to end the current pandemic.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Extracellular Traps/immunology , Thrombocytopenia/etiology , Animals , COVID-19/immunology , COVID-19 Vaccines/therapeutic use , Humans , Inflammasomes/immunology , Interleukin-1beta/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Thrombocytopenia/immunology , Thrombocytopenia/prevention & control , Thrombocytopenia/therapy
19.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360774

ABSTRACT

Neutrophil extracellular traps (NETs), built from mitochondrial or nuclear DNA, proteinases, and histones, entrap and eliminate pathogens in the course of bacterial or viral infections. Neutrophils' activation and the formation of NETs have been described as major risk factors for acute lung injury, multi-organ damage, and mortality in COVID-19 disease. NETs-related lung injury involves both epithelial and endothelial cells, as well as the alveolar-capillary barrier. The markers for NETs formation, such as circulating DNA, neutrophil elastase (NE) activity, or myeloperoxidase-DNA complexes, were found in lung specimens of COVID-19 victims, as well as in sera and tracheal aspirates obtained from COVID-19 patients. DNA threads form large conglomerates causing local obstruction of the small bronchi and together with NE are responsible for overproduction of mucin by epithelial cells. Various components of NETs are involved in the pathogenesis of cytokine storm in SARS-CoV-2 pulmonary disease. NETs are responsible for the interplay between inflammation and thrombosis in the affected lungs. The immunothrombosis, stimulated by NETs, has a poor prognostic significance. Better understanding of the role of NETs in the course of COVID-19 can help to develop novel approaches to the therapeutic interventions in this condition.


Subject(s)
COVID-19/immunology , Extracellular Traps/virology , Lung/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Endothelial Cells/pathology , Epithelial Cells/pathology , Extracellular Traps/immunology , Histones/immunology , Humans , Leukocyte Elastase/deficiency , Leukocyte Elastase/immunology , Lung/pathology , Lung/virology , Neutrophil Activation , Neutrophils/virology , Peroxidase/immunology
20.
Front Immunol ; 12: 631821, 2021.
Article in English | MEDLINE | ID: covidwho-1344260

ABSTRACT

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Subject(s)
Cell Death/immunology , Neutrophils/pathology , Apoptosis/immunology , Apoptosis Regulatory Proteins/metabolism , Autophagy/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Free Radicals/metabolism , Humans , Necroptosis/immunology , Necrosis/immunology , Necrosis/metabolism , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Pyroptosis/immunology , Receptors, Death Domain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL