Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Artif Organs ; 45(12): 1522-1532, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526346

ABSTRACT

Disturbed oxygenation is foremost the leading clinical presentation in COVID-19 patients. However, a small proportion also develop carbon dioxide removal problems. The Advanced Organ Support (ADVOS) therapy (ADVITOS GmbH, Munich, Germany) uses a less invasive approach by combining extracorporeal CO2 -removal and multiple organ support for the liver and the kidneys in a single hemodialysis device. The aim of our study is to evaluate the ADVOS system as treatment option in-COVID-19 patients with multi-organ failure and carbon dioxide removal problems. COVID-19 patients suffering from severe respiratory insufficiency, receiving at least two treatments with the ADVOS multi system (ADVITOS GmbH, Munich, Germany), were eligible for study inclusion. Briefly, these included patients with acute kidney injury (AKI) according to KDIGO guidelines, and moderate or severe ARDS according to the Berlin definition, who were on invasive mechanical ventilation for more than 72 hours. In total, nine COVID-19 patients (137 ADVOS treatment sessions with a median of 10 treatments per patient) with moderate to severe ARDS and carbon dioxide removal problems were analyzed. During the ADVOS treatments, a rapid correction of acid-base balance and a continuous CO2 removal could be observed. We observed a median continuous CO2 removal of 49.2 mL/min (IQR: 26.9-72.3 mL/min) with some treatments achieving up to 160 mL/min. The CO2 removal significantly correlated with blood flow (Pearson 0.421; P < .001), PaCO2 (0.341, P < .001) and HCO 3 - levels (0.568, P < .001) at the start of the treatment. The continuous treatment led to a significant reduction in PaCO2 from baseline to the last ADVOS treatment. In conclusion, it was feasible to remove CO2 using the ADVOS system in our cohort of COVID-19 patients with acute respiratory distress syndrome and multiorgan failure. This efficient removal of CO2 was achieved at blood flows up to 300 mL/min using a conventional hemodialysis catheter and without a membrane lung or a gas phase.


Subject(s)
COVID-19/therapy , Carbon Dioxide/blood , Extracorporeal Circulation/instrumentation , Lung/physiopathology , Multiple Organ Failure/therapy , Renal Dialysis/instrumentation , Respiration, Artificial , Aged , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Critical Illness , Extracorporeal Circulation/adverse effects , Female , Humans , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/diagnosis , Multiple Organ Failure/physiopathology , Renal Dialysis/adverse effects , Respiration, Artificial/adverse effects , Time Factors , Treatment Outcome
2.
JAMA ; 326(11): 1013-1023, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1441906

ABSTRACT

Importance: In patients who require mechanical ventilation for acute hypoxemic respiratory failure, further reduction in tidal volumes, compared with conventional low tidal volume ventilation, may improve outcomes. Objective: To determine whether lower tidal volume mechanical ventilation using extracorporeal carbon dioxide removal improves outcomes in patients with acute hypoxemic respiratory failure. Design, Setting, and Participants: This multicenter, randomized, allocation-concealed, open-label, pragmatic clinical trial enrolled 412 adult patients receiving mechanical ventilation for acute hypoxemic respiratory failure, of a planned sample size of 1120, between May 2016 and December 2019 from 51 intensive care units in the UK. Follow-up ended on March 11, 2020. Interventions: Participants were randomized to receive lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n = 202) or standard care with conventional low tidal volume ventilation (n = 210). Main Outcomes and Measures: The primary outcome was all-cause mortality 90 days after randomization. Prespecified secondary outcomes included ventilator-free days at day 28 and adverse event rates. Results: Among 412 patients who were randomized (mean age, 59 years; 143 [35%] women), 405 (98%) completed the trial. The trial was stopped early because of futility and feasibility following recommendations from the data monitoring and ethics committee. The 90-day mortality rate was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide removal group vs 39.5% in the standard care group (risk ratio, 1.05 [95% CI, 0.83-1.33]; difference, 2.0% [95% CI, -7.6% to 11.5%]; P = .68). There were significantly fewer mean ventilator-free days in the extracorporeal carbon dioxide removal group compared with the standard care group (7.1 [95% CI, 5.9-8.3] vs 9.2 [95% CI, 7.9-10.4] days; mean difference, -2.1 [95% CI, -3.8 to -0.3]; P = .02). Serious adverse events were reported for 62 patients (31%) in the extracorporeal carbon dioxide removal group and 18 (9%) in the standard care group, including intracranial hemorrhage in 9 patients (4.5%) vs 0 (0%) and bleeding at other sites in 6 (3.0%) vs 1 (0.5%) in the extracorporeal carbon dioxide removal group vs the control group. Overall, 21 patients experienced 22 serious adverse events related to the study device. Conclusions and Relevance: Among patients with acute hypoxemic respiratory failure, the use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical ventilation, compared with conventional low tidal volume mechanical ventilation, did not significantly reduce 90-day mortality. However, due to early termination, the study may have been underpowered to detect a clinically important difference. Trial Registration: ClinicalTrials.gov Identifier: NCT02654327.


Subject(s)
Carbon Dioxide/blood , Extracorporeal Circulation , Respiration, Artificial/methods , Respiratory Insufficiency/therapy , Aged , Early Termination of Clinical Trials , Extracorporeal Circulation/adverse effects , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/mortality , Tidal Volume
3.
Artif Organs ; 45(12): 1522-1532, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1429491

ABSTRACT

Disturbed oxygenation is foremost the leading clinical presentation in COVID-19 patients. However, a small proportion also develop carbon dioxide removal problems. The Advanced Organ Support (ADVOS) therapy (ADVITOS GmbH, Munich, Germany) uses a less invasive approach by combining extracorporeal CO2 -removal and multiple organ support for the liver and the kidneys in a single hemodialysis device. The aim of our study is to evaluate the ADVOS system as treatment option in-COVID-19 patients with multi-organ failure and carbon dioxide removal problems. COVID-19 patients suffering from severe respiratory insufficiency, receiving at least two treatments with the ADVOS multi system (ADVITOS GmbH, Munich, Germany), were eligible for study inclusion. Briefly, these included patients with acute kidney injury (AKI) according to KDIGO guidelines, and moderate or severe ARDS according to the Berlin definition, who were on invasive mechanical ventilation for more than 72 hours. In total, nine COVID-19 patients (137 ADVOS treatment sessions with a median of 10 treatments per patient) with moderate to severe ARDS and carbon dioxide removal problems were analyzed. During the ADVOS treatments, a rapid correction of acid-base balance and a continuous CO2 removal could be observed. We observed a median continuous CO2 removal of 49.2 mL/min (IQR: 26.9-72.3 mL/min) with some treatments achieving up to 160 mL/min. The CO2 removal significantly correlated with blood flow (Pearson 0.421; P < .001), PaCO2 (0.341, P < .001) and HCO 3 - levels (0.568, P < .001) at the start of the treatment. The continuous treatment led to a significant reduction in PaCO2 from baseline to the last ADVOS treatment. In conclusion, it was feasible to remove CO2 using the ADVOS system in our cohort of COVID-19 patients with acute respiratory distress syndrome and multiorgan failure. This efficient removal of CO2 was achieved at blood flows up to 300 mL/min using a conventional hemodialysis catheter and without a membrane lung or a gas phase.


Subject(s)
COVID-19/therapy , Carbon Dioxide/blood , Extracorporeal Circulation/instrumentation , Lung/physiopathology , Multiple Organ Failure/therapy , Renal Dialysis/instrumentation , Respiration, Artificial , Aged , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Critical Illness , Extracorporeal Circulation/adverse effects , Female , Humans , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/diagnosis , Multiple Organ Failure/physiopathology , Renal Dialysis/adverse effects , Respiration, Artificial/adverse effects , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...