Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1295858


The coronavirus disease 2019 (COVID-19) pandemic has claimed over 2.7 million lives globally. Obesity has been associated with increased severity and mortality of COVID-19. However, the molecular mechanisms by which obesity exacerbates COVID-19 pathologies are not well-defined. The levels of free fatty acids (FFAs) are elevated in obese subjects. This study was therefore designed to examine how excess levels of different FFAs may affect the progression of COVID-19. Biological molecules associated with palmitic acid (PA) and COVID-19 were retrieved from QIAGEN Knowledge Base, and Ingenuity Pathway Analysis tools were used to analyze these datasets and explore the potential pathways affected by different FFAs. Our study found that one of the top 10 canonical pathways affected by PA was the coronavirus pathogenesis pathway, mediated by key inflammatory mediators, including PTGS2; cytokines, including IL1ß and IL6; chemokines, including CCL2 and CCL5; transcription factors, including NFκB; translation regulators, including EEF1A1; and apoptotic mediators, including BAX. In contrast, n-3 fatty acids may attenuate PA's activation of the coronavirus pathogenesis pathway by inhibiting the activity of such mediators as IL1ß, CCL2, PTGS2, and BAX. Furthermore, PA may modulate the expression of ACE2, the main cell surface receptor for the SARS-CoV-2 spike protein.

COVID-19/metabolism , Fatty Acids, Nonesterified/metabolism , Obesity/metabolism , Palmitic Acid/metabolism , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/epidemiology , COVID-19/pathology , Chemokines/metabolism , Computational Biology/methods , Cytokines/metabolism , Databases, Factual , Fatty Acids, Nonesterified/blood , Humans , Inflammation Mediators/metabolism , Obesity/pathology , Pandemics , SARS-CoV-2/isolation & purification
JCI Insight ; 5(14)2020 07 23.
Article in English | MEDLINE | ID: covidwho-607189


BACKGROUNDReprogramming of host metabolism supports viral pathogenesis by fueling viral proliferation, by providing, for example, free amino acids and fatty acids as building blocks.METHODSTo investigate metabolic effects of SARS-CoV-2 infection, we evaluated serum metabolites of patients with COVID-19 (n = 33; diagnosed by nucleic acid testing), as compared with COVID-19-negative controls (n = 16).RESULTSTargeted and untargeted metabolomics analyses identified altered tryptophan metabolism into the kynurenine pathway, which regulates inflammation and immunity. Indeed, these changes in tryptophan metabolism correlated with interleukin-6 (IL-6) levels. Widespread dysregulation of nitrogen metabolism was also seen in infected patients, with altered levels of most amino acids, along with increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and renal dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis. Interestingly, metabolite levels in these pathways correlated with clinical laboratory markers of inflammation (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen).CONCLUSIONIn conclusion, this initial observational study identified amino acid and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.FUNDINGBoettcher Foundation Webb-Waring Biomedical Research Award; National Institute of General and Medical Sciences, NIH; and National Heart, Lung, and Blood Institute, NIH.

Coronavirus Infections/metabolism , Fatty Acids/metabolism , Interleukin-6/metabolism , Kynurenine/metabolism , Oxidative Stress , Pneumonia, Viral/metabolism , Renal Insufficiency/metabolism , Adult , Aged , Amino Acids/metabolism , Betacoronavirus , Blood Glucose/metabolism , COVID-19 , Case-Control Studies , Creatine/metabolism , Creatinine/metabolism , Cystine , Fatty Acids, Nonesterified/metabolism , Female , Humans , Male , Metabolome , Metabolomics , Methionine/analogs & derivatives , Middle Aged , Pandemics , Polyamines/metabolism , Proteolysis , SARS-CoV-2 , Tryptophan/metabolism