Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Front Public Health ; 10: 892290, 2022.
Article in English | MEDLINE | ID: covidwho-1963627

ABSTRACT

In COVID-19 infection, the emissions of droplets and aerosols produced by the respiratory tract of contaminated subjects may represent a high risk of spreading the SARS-COV-2 virus in the environment. Thus, studies have shown that there is, at least, another source of droplets and aerosols in which viral particles of SARS-COV-2 can be found. It happens after flushing of toilet to dispose of the stools of a patient who has contracted COVID-19. The presence of viral particles of SARS-COV-2 in the stool could be linked to the concentration of angiotensin-converting enzyme 2 (ACE2) found on the surface of intestinal cells. Therefore, there is a reason to wonder whether the emission of viral particles by activating a toilet flush could represent an important potential risk of contamination for health care workers. To investigate this hypothesis, we have correlated different studies on the production of droplets and aerosols as well as the presence of viral particles following flush of toilet. This pooling of these studies led to the following conclusion: the precautionary principle should be applied with regard to the potential risk represented by viral particles of SARV-COV-2 in the stool when flushing the toilet.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols/adverse effects , Feces , Humans , Viral Load
2.
J Vet Med Sci ; 84(7): 929-937, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1957092

ABSTRACT

After improvement of hygiene protocols on boots in a bovine operation (farm A) in Ibaraki, Japan in September 2017, mortality of calves and the detection of 4 viral pathogen indicators, including bovine rotavirus A (RVA), became significantly low for one year. Subsequently, in the present study, these indicators and mortality were monitored and confirmed all were still low, except for the detection rate of bovine RVA in calves less than 3 weeks old. The present study aimed to investigate G and P genotypic profiles of RVAs in farm A from 2018 to 2020. Molecular analysis using semi-nested multiplex RT-PCR of positive RVAs (n=122) and sequencing of selected samples revealed the presence of G6, G8, G10, P[1], P[5] and P[11] genotypes and the prevalence of G and/or P combination and mixed infections. The most common combination of G and P types was G10P[11] (41.8%), followed by mixed infection with G6+G10P[5] (11.5%). Phylogenetic analysis of RVAs showed clustering with bovine and other animal-derived RVA strains, suggesting the possibility of multiple reassortant events with strains of bovine and others animal origins. Noteworthy as well is that vaccinated cattle might fail to provide their offspring with maternal immunity against RVA infections, due to insufficient colostrum feeding. Our findings further highlight the importance of RVA surveillance in bovine populations, which may be useful to improving effective routine vaccination and hygiene practices on bovine farms.


Subject(s)
Cattle Diseases , Rotavirus Infections , Rotavirus , Animals , Biosecurity , Cattle , Cattle Diseases/epidemiology , Farms , Feces , Genetic Profile , Genotype , Phylogeny , Rotavirus/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/veterinary
3.
Chemosphere ; 305: 135247, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1944501

ABSTRACT

The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Feces , Humans , Hyssopus Plant , Sewage , Waste Water
4.
Eur J Pediatr ; 181(8): 3175-3191, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1941645

ABSTRACT

Microbiota composition may play a role in the development, prognosis, or post-infection of COVID-19. There are studies evaluating the microbiota composition at the time of diagnosis and during the course of COVID-19, especially in adults, while studies in children are limited and no study available in children with multisystem inflammatory syndrome in children (MIS-C). This study was planned to compare intestinal microbiota composition in children diagnosed with MIS-C and acute COVID-19 infection with healthy children. In this prospective multicenter study, 25 children diagnosed with MIS-C, 20 with COVID-19 infection, and 19 healthy children were included. Intestinal microbiota composition was evaluated by 16 s rRNA gene sequencing. We observed changes of diversity, richness, and composition of intestinal microbiota in MIS-C cases compared to COVID-19 cases and in the healthy controls. The Shannon index was higher in the MIS-C group than the healthy controls (p < 0.01). At phylum level, in the MIS-C group, a significantly higher relative abundance of Bacteroidetes and lower abundance of Firmicutes was found compared to the control group. Intestinal microbiota composition changed in MIS-C cases compared to COVID-19 and healthy controls, and Faecalibacterium prausnitzii decreased; Bacteroides uniformis, Bacteroides plebeius, Clostridium ramosum, Eubacterium dolichum, Eggerthella lenta, Bacillus thermoamylovorans, Prevotella tannerae, and Bacteroides coprophilus were dominant in children with MIS-C. At species level, we observed decreased Faecalibacterium prausnitzii, and increased Eubacterium dolichum, Eggerthella lenta, and Bacillus thermoamylovorans in children with MIS-C and increased Bifidobacterium adolescentis and Dorea formicigenerasus in the COVID-19 group. Our study is the first to evaluate the microbiota composition in MIS-C cases. There is a substantial change in the composition of the gut microbiota: (1) reduction of F. prausnitzii in children with MIS-C and COVID-19; (2) an increase of Eggerthella lenta which is related with autoimmunity; and (3) the predominance of E. dolichum is associated with metabolic dysfunctions and obesity in children with MIS-C. CONCLUSIONS:  Alterations of the intestinal microbiota might be part of pathogenesis of predisposing factor for MIS-C. It would be beneficial to conduct more extensive studies on the cause-effect relationship of these changes in microbiota composition and their effects on long-term prognosis. WHAT IS KNOWN: • Microbiota composition may play a role in the development, prognosis, or post-infection of COVID-19.  • However, the number of studies on children is limited, and no study on multisystem inflammatory syndrome in children is currently available (MIS-C). WHAT IS NEW: • In individuals with MIS-C, the composition of the gut microbiota changed dramatically. • Decreased Faecalibacterium prausnitzii have been observed, increased Eggerthella lenta, which was previously linked to autoimmunity, and predominance of Eubacterium dolichum which was linked to metabolic dysfunction and obesity.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Pediatric Obesity , Actinobacteria , Adult , Bacillus , COVID-19/complications , Child , Feces/microbiology , Firmicutes , Gastrointestinal Microbiome/genetics , Humans , Prospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
5.
Arch Microbiol ; 204(8): 513, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1941517

ABSTRACT

The plant pathogen pepper mild mottle virus (PMMoV) has recently been proposed as a water quality indicator, it is a RNA virus belonging to the genus Tobamovirus in the family Virgoviridae that causes harm to the pepper crops. After consuming processed food products containing infected peppers, such as hot sauces, PMMoV is excreted in high concentrations in feces; therefore, this is the most common RNA virus, constantly found in the feces of humans. The fecal-oral pathway is emerging as an environmental problem. The presence of high concentrations of pathogens associated with human excreta in environmental waters or water reuse supplies poses a threat to public health. Due to the difficulty in determining the presence of pathogens effectively in water, attempts to monitor microbial water quality often use surrogates or indicator organisms that can be easily detected; therefore, PMMoV is used as a viral surrogate in aquatic environment. This paper describes the incidence and persistence of PMMoV in aquatic environments and in waste treatment plants and its usefulness for quantifying virus reductions by advanced water treatment technologies. In recent research, SARS-CoV-2 was reported to be found in wastewater and utilized for the purpose of monitoring coronavirus illness outbreaks. Since PMMoV is readily identified in the human feces and can also serve as an indicator of human waste, the determined PMMoV concentrations may be utilized to give the normalized report of the SARS-CoV-2 concentration, so that, the amount of human waste found in the wastewater can be taken into consideration.


Subject(s)
COVID-19 , Tobamovirus , Feces , Humans , SARS-CoV-2 , Tobamovirus/genetics , Waste Water , Water Microbiology
6.
Viruses ; 14(7)2022 07 14.
Article in English | MEDLINE | ID: covidwho-1939018

ABSTRACT

A PEDV/PDCoV/TGEV/SADS-CoV/XIPC 5-plex real-time RT-PCR was developed and validated for the simultaneous detection and differentiation of four swine enteric coronaviruses (PEDV, PDCoV, TGEV and SADS-CoV) in one PCR reaction (XIPC serves as an exogenous internal positive control). The 5-plex PCR had excellent analytical specificity, analytical sensitivity, and repeatability based on the testing of various viral and bacterial pathogens, serial dilutions of virus isolates, and in vitro transcribed RNAs. The 5-plex PCR had comparable diagnostic performance to a commercial PEDV/TGEV/PDCoV reference PCR, based on the testing of 219 clinical samples. Subsequently, 1807 clinical samples collected from various U.S. states during 2019-2021 were tested by the 5-plex PCR to investigate the presence of SADS-CoV in U.S. swine and the frequency of detecting swine enteric CoVs. All 1807 samples tested negative for SADS-CoV. Among the samples positive for swine enteric CoVs, there was a low frequency of detecting TGEV, an intermediate frequency of detecting PDCoV, and a high frequency of detecting PEDV. Although there is no evidence of SADS-CoV presence in the U.S. at present, the availability of the 5-plex PCR will enable us to conduct ongoing surveillance to detect and differentiate these viruses in swine samples and other host species samples as some of these coronaviruses can cause cross-species infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Alphacoronavirus , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Feces , Porcine epidemic diarrhea virus/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Swine , Swine Diseases/diagnosis
7.
PLoS One ; 17(6): e0270378, 2022.
Article in English | MEDLINE | ID: covidwho-1910680

ABSTRACT

BACKGROUND: Intestinal parasitic infection (IPIs) is one of the major health problems in Sub -Saharan Africa where water, sanitation and hygiene practices are inadequate. Taking into account the national level implementation of intensive hand hygiene against COVID-19 pandemic and general protective effect this study assessed its effect on intestinal parasite. OBJECTIVE: This study aim to investigate the effect of compliance to hand hygiene practice on the prevalence of intestinal parasitic infection (IPIs) and intensity of Soil transmitted helminthes (STH) among patients attending tertiary care hospital in southern Ethiopia. METHODS: Observational study was conducted from June to September 2021. Data on socio demographic, hand hygiene practice and intestinal parasite (prevalence and intensity of helminthic infection) was collected from randomly selected and consented patients. Compliance to hand hygiene practice was assessed using pre-tested questionnaire. Fresh stool sample from each participant was examined by direct wet mount, concentration and Ziehl-Neelson (ZN) staining technique to detect intestinal parasite. Intensity of STH measurements was done through direct egg-count per gram using Kato Katz methods. Data analysis was done using SPSS version 25. Odds ratio with 95% confidence interval was used to measure association and p-value <0.05 was considered as statistically significant. RESULTS: The study population (N = 264) consisted of 139(52.65%) male and 125 (47.34%) female with the mean ages of 36 ±16.12(±SD). The proportion of good compliance to hand hygiene during COVID-19 to was 43.93% (95%CI: 37% to 47) and prevalence of intestinal parasite was 26.14% (95%CI:21.2% to 31.75) comprising 23.48% intestinal protozoa and 6.43% of soil transmitted helminthic infection. Gardia lamblia, Entamoeba histolytica/dispar, Ascaris lumbricoides were the common parasite in the study area with prevalence of 15.53%, 6.44%, and 1.52% respectively. Prevalence of intestinal parasite among participants with good compliance to hand hygiene group and poor compliance to hand hygiene were (14.65% vs. 35.13%)(AOR: 0.48,95%CI:0.13 to 0.68) (p = 0.002) implying that good compliance to hand hygiene can reduce the risk of IPIs by 52%. Moreover significantly lower odds of intestinal protozoa among good compliance to hand hygiene group than the control (OR:0.38; (95%CI: 0.20 to 0.71);P = 0.001. However, no significant difference in the odds of intensity of STH infection in good compliance hand hygiene and poor compliance group. The result of this study also confirmed the association between intestinal parasitic infections and younger /adolescent age, education status, habit of eating raw vegetable and figure nail status. CONCLUSION: Good hand hygiene compliance during COVID-19 significantly associated with reduction of intestinal parasitic infection. This finding highlights the secondary protective effect of improved hand hygiene against IPIs and suggest it can used in augmenting the existing parasitic control strategies in the study setting.


Subject(s)
COVID-19 , Hand Hygiene , Helminthiasis , Helminths , Intestinal Diseases, Parasitic , Parasites , Trematode Infections , Adolescent , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Ethiopia/epidemiology , Feces/parasitology , Female , Helminthiasis/epidemiology , Hospitals, General , Humans , Intestinal Diseases, Parasitic/complications , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/prevention & control , Male , Pandemics , Prevalence , Risk Factors , Soil/parasitology , Trematode Infections/epidemiology
8.
BMC Infect Dis ; 22(1): 572, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1910275

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 infection on the gut fungal (mycobiota) and bacterial (microbiota) communities has been elucidated individually. This study analyzed both gut mycobiota and microbiota and their correlation in the COVID-19 patients with severe and mild conditions and follow-up to monitor their alterations after recovery. METHODS: We analyzed the gut mycobiota and microbiota by bacterial 16S and fungal ITS1 metagenomic sequencing of 40 severe patients, 38 mild patients, and 30 healthy individuals and reanalyzed those of 10 patients with severe COVID-19 approximately 6 months after discharge. RESULTS: The mycobiota of the severe and mild groups showed lower diversity than the healthy group, and in some, characteristic patterns dominated by a single fungal species, Candida albicans, were detected. Lower microbial diversity in the severe group was observed, but no differences in its diversity or community structure were detected between the mild and healthy groups. The microbiota of the severe group was characterized by an increase in Enterococcus and Lactobacillus, and a decrease in Faecalibacterium and Bacteroides. The abundance of Candida was positively correlated with that of Enterococcus in patients with COVID-19. After the recovery of severe patients, alteration of the microbiota remained, but the mycobiota recovered its diversity comparable to that of mild and healthy groups. CONCLUSION: In mild cases, the microbiota is stable during SARS-CoV-2 infection, but in severe cases, alterations persist for 6 months after recovery.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Enterococcus , Feces/microbiology , Humans , SARS-CoV-2
9.
Sci Rep ; 12(1): 6562, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1908263

ABSTRACT

Dysbiosis in the human gastrointestinal microbial community could functionally impact microbial metabolism and colonization resistance to pathogens. To further elucidate the indicators of microbial strain dysbiosis, we have developed an analytic method that detects patterns of presence/absence of selected KEGG metabolic pathways for a selected strain (PKS). Using a metagenomic data set consisting of multiple high-density fecal samples from six normal individuals, we found three had unique PKS for important gut commensal microbes, Bacteroides vulgatus and Bacteroides uniformis, at all sample times examined. Two individuals had multiple shared PKS clusters of B. vulgatus or B. uniformis over time. Analysis of a data set of high-density fecal samples from eight COVID-19 hospitalized patients taken over a short period revealed that two patients had shared PKS clusters for B. vulgatus and one shared cluster for B. uniformis. Our analysis demonstrates that while the majority of normal individuals with no B. vulgatus or B. uniformis strain change over time have unique PKS, in some healthy humans and patients hospitalized with COVID-19, we detected shared PKS clusters at the different times suggesting a slowing down of the intrinsic rates of strain variation that could eventually lead to a dysbiosis in the microbial strain community.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Dysbiosis , Feces , Hospitalization , Humans
11.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1903483

ABSTRACT

As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Cats , Coronavirus, Feline/genetics , Feces , Feline Infectious Peritonitis/drug therapy , Furans , Mutation , RNA, Viral/genetics
12.
Front Cell Infect Microbiol ; 12: 853212, 2022.
Article in English | MEDLINE | ID: covidwho-1902932

ABSTRACT

Background: SARS-CoV-2 is highly contagious and poses a great threat to epidemic control and prevention. The possibility of fecal-oral transmission has attracted increasing concern. However, viral shedding in feces has not been completely investigated. Methods: This study retrospectively reviewed 97 confirmed coronavirus disease 2019 (COVID-19) patients hospitalized at the First Affiliated Hospital, School of Medicine, Zhejiang University, from January 19 to February 17, 2020. SARS-CoV-2 RNA in samples of sputum, nasopharyngeal or throat swabs, bronchoalveolar lavage and feces was detected by real-time reverse transcription polymerase chain reaction (RT-PCR). Clinical characteristics and parameters were compared between groups to determine whether fecal RNA was positive. Results: Thirty-four (35.1%) of the patients showed detectable SARS-CoV-2 RNA in feces, and 63 (64.9%) had negative detection results. The median time of viral shedding in feces was approximately 25 days, with the maximum time reaching 33 days. Prolonged fecal-shedding patients showed longer hospital stays. Those patients for whom fecal viral positivity persisted longer than 3 weeks also had lower plasma B-cell counts than those patients in the non-prolonged group [70.5 (47.3-121.5) per µL vs. 186.5 (129.3-376.0) per µL, P = 0.023]. Correlation analysis found that the duration of fecal shedding was positively related to the duration of respiratory viral shedding (R = 0.70, P < 0.001) and negatively related to peripheral B-cell counts (R = -0.44, P < 0.05). Conclusions: COVID-19 patients who shed SARS-CoV-2 RNA in feces presented similar clinical characteristics and outcomes as those who did not shed SARS-CoV-2 RNA in feces. The prolonged presence of SARS-CoV-2 nucleic acids in feces was highly correlated with the prolonged shedding of SARS-CoV-2 RNA in the respiratory tract and with lower plasma B-cell counts.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Feces/chemistry , Humans , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/genetics
13.
Sci Rep ; 12(1): 7397, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1900638

ABSTRACT

The main objective was to evaluate the viability of the SARS-CoV-2 viral particles excreted in stools. In addition, we aimed to identify clinical factors associated with the detection of SARS-CoV-2 RNA in feces, and to determine if its presence is associated with an unfavorable clinical outcome, defined as intensive care unit (ICU) admission and/or death. A prospective multicenter cohort study of COVID-19 adult patients, with confirmed SARS-CoV-2 infection by RT-PCR assay in nasopharyngeal (NP) swabs admitted to four hospitals in Spain, from March 2020 to February 2021. Sixty-two adult COVID-19 patients had stool samples collected at admission and/or during the follow up, with a total of 79 stool samples. SARS-CoV-2 RNA was detected in stool samples from 27 (43.5%) out of the 62 patients. Replicative virus, measured by the generation of cytopathic effect in cell culture and subsequent RT-PCR confirmation of a decrease in the Ct values, was not found in any of these stool samples. Fecal virus excretion was not associated with the presence of gastrointestinal symptoms, or with differences in the evolution of COVID-19 patients. Our results suggest that SARS-CoV-2 replicative capacity is null or very limited in stool samples, and thus, the fecal-oral transmission of SARS-CoV-2 as an alternative infection route is highly unlikely. In our study, the detection of SARS-CoV-2 RNA in feces at the beginning of the disease is not associated with any clinical factor nor with an unfavorable clinical outcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , Cohort Studies , Feces , Humans , Prospective Studies , RNA, Viral/genetics , SARS-CoV-2/genetics
14.
J Med Virol ; 93(2): 886-891, 2021 02.
Article in English | MEDLINE | ID: covidwho-1898895

ABSTRACT

Italy was one of the most affected nations by coronavirus disease 2019 outside China. The infections, initially limited to Northern Italy, spread to all other Italian regions. This study aims to provide a snapshot of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) epidemiology based on a single-center laboratory experience in Rome. The study retrospectively included 6565 subjects tested for SARS-CoV-2 at the Laboratory of Virology of Sapienza University Hospital in Rome from 6 March to 4 May. A total of 9995 clinical specimens were analyzed, including nasopharyngeal swabs, bronchoalveolar lavage fluids, gargle lavages, stools, pleural fluids, and cerebrospinal fluids. Positivity to SARS-CoV-2 was detected in 8% (527/6565) of individuals, increased with age, and was higher in male patients (P < .001). The number of new confirmed cases reached a peak on 18 March and then decreased. The virus was detected in respiratory samples, in stool and in pleural fluids, while none of gargle lavage or cerebrospinal fluid samples gave a positive result. This analysis allowed to gather comprehensive information on SARS-CoV-2 epidemiology in our area, highlighting positivity variations over time and in different sex and age group and the need for a continuous surveillance of the infection, mostly because the pandemic evolution remains unknown.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , Bronchoalveolar Lavage Fluid/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Child , Child, Preschool , Feces/virology , Female , Hospitals, University , Humans , Infant , Infant, Newborn , Laboratories , Male , Middle Aged , Nasopharynx/virology , Pleural Effusion/virology , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Rome/epidemiology , SARS-CoV-2/genetics , Severity of Illness Index
15.
Med Trop Sante Int ; 2(1)2022 03 31.
Article in French | MEDLINE | ID: covidwho-1893752

ABSTRACT

Introduction: The current COVID-19 pandemic is due to a new emerging coronavirus SARS-CoV-2, belonging to the Coronaviridae family and to the Orthocoronavirinae subfamily. This virus was first reported in December 2019 in China. Although reported by several countries in several animal species, COVID-19 is a disease transmitted from human to human. Moreover, SARS-CoV-2 virus and its RNA were detected in body excretions besides saliva, such as urine and fecal matter discharged into sewage. Bibliographic review: Within this framework, this article aims to synthesize the bibliographical reviews on SARS-CoV-2 in aquatic environment. It will underline the generalities on SARS-CoV-2, the possible sources of potential contaminations of SARS-CoV-2 in water environment, the viability of SARS-CoV-2 in aquatic environment, the receptive species and the impacts of SARS-CoV-2 on the aquatic ecosystems. Conclusion: We compile key information about SARS-CoV-2 that are considered important to remember and highlight the importance of further research in this area in order to assess the hazards of SARS-CoV-2 on aquatic ecosystems.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/epidemiology , Ecosystem , Feces , Humans , Pandemics
16.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1884201

ABSTRACT

Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of "ideal" diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/etiology , Early Detection of Cancer/methods , Clinical Decision-Making , Colorectal Neoplasms/metabolism , Disease Management , Disease Susceptibility , Feces/chemistry , Humans , Liquid Biopsy/methods , Precision Medicine/methods , Volatile Organic Compounds
17.
Sci Total Environ ; 838(Pt 4): 156535, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-1882500

ABSTRACT

Wastewater-based epidemiology (WBE) has been utilized as an early warning tool to anticipate disease outbreaks, especially during the COVID-19 pandemic. However, COVID-19 disease models built from wastewater-collected data have been limited by the complexities involved in estimating SARS-CoV-2 fecal shedding rates. In this study, wastewater from six municipalities in Arizona and Florida with distinct demographics were monitored for SARS-CoV-2 RNA between September 2020 and December 2021. Virus concentrations with corresponding clinical case counts were utilized to estimate community-wide fecal shedding rates that encompassed all infected individuals. Analyses suggest that average SARS-CoV-2 RNA fecal shedding rates typically occurred within a consistent range (7.53-9.29 log10 gc/g-feces); and yet, were unique to each community and influenced by population demographics. Age, ethnicity, and socio-economic factors may have influenced shedding rates. Interestingly, populations with median age between 30 and 39 had the greatest fecal shedding rates. Additionally, rates remained relatively constant throughout the pandemic provided conditions related to vaccination and variants were unchanged. Rates significantly increased in some communities when the Delta variant became predominant. Findings in this study suggest that community-specific shedding rates may be appropriate in model development relating wastewater virus concentrations to clinical case counts.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Feces , Humans , Pandemics , RNA, Viral , Waste Water , Wastewater-Based Epidemiological Monitoring
18.
Medicina (Kaunas) ; 58(5)2022 May 06.
Article in English | MEDLINE | ID: covidwho-1875698

ABSTRACT

This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient's clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Feces , Humans , Nasopharynx , SARS-CoV-2
19.
Microbiol Spectr ; 10(3): e0266921, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1874519

ABSTRACT

The aim is determining the impact of non-pharmaceutical measures (NPIs) against SARS-CoV-2 in the incidence and prevalence of gastrointestinal viruses (GV) in children. Demographic, analytical, and clinical data of children from which samples were received at the Hospital Universitario La Paz (Madrid, Spain) and that had a gastrointestinal infection with a positive sample through multiplex-PCR for GV were collected. The time periods included were prepandemic (P1): March 14, 2019 to March 14, 2020 and pandemic (P2): March 15, 2020 to March 15, 2021. The global prevalence, relative incidence (RI, per 1,000 admissions) and absolute incidence (AI, per 100,000 population) of GV were compared for both time periods. The prevalence of GV versus SARS-CoV-2 was determined for P2. Seven-hundred and 50 out of 2,547 children analyzed in P1 and 106 out of 1,368 in P2 were positive by PCR for GV (46.3% decrease in P2). Prevalence and RI of GV declined in P2, except for the RI of rotavirus. Adenovirus showed the largest decreased of prevalence and RI (100%), followed by sapovirus. Astrovirus reduction was less pronounced (3.1% versus 0.4%). Norovirus was the most frequent virus in both time periods and its prevalence and RI also decreased in P2 (15.2% versus 4.7% and 3.40 versus 1.74, respectively). Rotavirus had the smallest decrease in prevalence (2.6% versus 2.5%), and its RI increased during P2 from 0.7 to 0.93. After removing the rotavirus vaccine strains from the analysis, the prevalence and RI decreased during P2 (2.1% to 0.7% and 0.5 to 0.3, respectively). The AI decreased during P2 in all GV, and the prevalence of SARS-CoV-2 and GV was inversely proportional over time. Prevalence and incidence of GV have decreased during the pandemic, probably due to the implementation of NPIs against this virus and the reduction of health care attention to infections other than COVID-19. The differences in the decrease of prevalence and incidence for each virus may be explained by differences in the transmission and the resistance in the environment. Prevalence and RI of rotavirus might be biased since the PCR used detects both the infecting and the vaccine strains. IMPORTANCE Our original article contains an analysis of the impact of the measures applied against SARS-CoV-2 on the prevalence and incidence of GV in children. The small number of studies published to date that analyze the impact of these measures individually on each of the GV makes our study of great interest at this time.


Subject(s)
COVID-19 , Communicable Diseases , Gastroenteritis , Gastrointestinal Diseases , Rotavirus , Viruses , COVID-19/epidemiology , Child , Communicable Diseases/epidemiology , Feces , Gastrointestinal Diseases/epidemiology , Humans , Incidence , Infant , Pandemics , Prevalence , Retrospective Studies , SARS-CoV-2/genetics
20.
J Infect Chemother ; 28(9): 1347-1351, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867378

ABSTRACT

INTRODUCTION: Norovirus (NoV) is the most common agent causing outbreaks and sporadic cases of acute gastroenteritis among all ages, especially children under 5 years old. During the coronavirus disease 2019 (COVID-19) pandemic, NoV infection has decreased drastically in Japan due to school closures and no outbreak related to NoV infection had been reported. METHOD: In mid-September 2021, NoV outbreak occurred in kindergarten and nursery schools in Maizuru, Kyoto prefecture, Japan. Twenty-six stool samples collected from patients who were diagnosed of NoV gastroenteritis from the outbreak by an immunochromatographic (IC) kit at a pediatric outpatient clinic in Maizuru city during 3 weeks from September 13 to October 8, 2021 were examined for the presence of NoV GII by reverse transcriptase-polymerase chain reaction (RT-PCR), genome sequencing, and phylogenetic analysis. RESULT: All 26 samples were confirmed positive to NoV GII and their genotypes were identified as GII.4 Sydney[P31]. The amino acid substitutions in open reading frame1 (ORF1) and ORF2 genes were found when compared with previously detected sporadic NoV GII.4 Sydney[P31] strains isolated in Japan. The clinical characterization of infected children was described. Most of the children were mild cases and vomiting was the most frequent clinical symptom. CONCLUSION: This study reported a recent emergence of NoV GII.4 Sydney[P31] causing acute gastroenteritis outbreak in children in Japan during the COVID-19 pandemic and suggests a need for further monitoring of NoV GII.4 variants.


Subject(s)
COVID-19 , Caliciviridae Infections , Gastroenteritis , Norovirus , COVID-19/epidemiology , Caliciviridae Infections/epidemiology , Child , Child, Preschool , Feces , Gastroenteritis/epidemiology , Genotype , Humans , Japan/epidemiology , Norovirus/genetics , Pandemics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL