Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ann Med ; 53(1): 181-188, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575964

ABSTRACT

OBJECTIVE: To illustrate the effect of corticosteroids and heparin, respectively, on coronavirus disease 2019 (COVID-19) patients' CD8+ T cells and D-dimer. METHODS: In this retrospective cohort study involving 866 participants diagnosed with COVID-19, patients were grouped by severity. Generalized additive models were established to explore the time-course association of representative parameters of coagulation, inflammation and immunity. Segmented regression was performed to examine the influence of corticosteroids and heparin upon CD8+ T cell and D-dimer, respectively. RESULTS: There were 541 moderate, 169 severe and 156 critically ill patients involved in the study. Synchronous changes of levels of NLR, D-dimer and CD8+ T cell in critically ill patients were observed. Administration of methylprednisolone before 14 DFS compared with those after 14 DFS (ß = 0.154%, 95% CI=(0, 0.302), p=.048) or a dose lower than 40 mg per day compared with those equals to 40 mg per day (ß = 0.163%, 95% CI=(0.027, 0.295), p=.020) significantly increased the rising rate of CD8+ T cell in 14-56 DFS. CONCLUSIONS: The parameters of coagulation, inflammation and immunity were longitudinally correlated, and an early low-dose corticosteroid treatment accelerated the regaining of CD8+ T cell to help battle against SARS-Cov-2 in critical cases of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , COVID-19/drug therapy , Glucocorticoids/administration & dosage , Inflammation/drug therapy , Adult , Aged , Aged, 80 and over , Blood Coagulation/drug effects , Blood Coagulation/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/immunology , Heparin/administration & dosage , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Linear Models , Longitudinal Studies , Lymphocyte Count , Male , Methylprednisolone/administration & dosage , Middle Aged , Models, Biological , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Time-to-Treatment , Young Adult
2.
Ann Hematol ; 101(3): 513-520, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1549412

ABSTRACT

Hyperferritinemia comes to light frequently in general practice. However, the characteristics of COVID-19-associated hyperferritinemia and the relationship with the prognosis were not well described. The retrospective study included 268 documented COVID-19 patients. They were divided into the hyperferritinemia group (≥ 500 µg/L) and the non-hyperferritinemia group (< 500 µg/L). The prevalence of fever and thrombocytopenia and the proportion of patients with mechanical ventilator support and in-hospital death were much higher in the hyperferritinemia group (P < 0.001). The hyperferritinemia patients showed higher median IL-6, D-dimer, and hsCRP (P < 0.001) and lowered FIB level (P = 0.036). The hyperferritinemia group had a higher proportion of patients with AKI, ARDS, and CSAC (P < 0.001). According to the multivariate analysis, age, chronic pulmonary disease, and hyperferritinemia were found to be significant independent predictors for in-hospital mortality [HR 1.041 (95% CI 1.015-1.068), P = 0.002; HR 0.427 (95% CI 0.206-0.882), P = 0.022; HR 6.176 (95% CI 2.447-15.587), P < 0.001, respectively]. The AUROC curve was 0.88, with a cut-off value of ≥ 971 µg/L. COVID-19 patients with hyperferritinemia had a high proportion of organ dysfunction, were more likely to show hyper-inflammation, progressed to hemophagocytic lymphohistiocytosis, and indicated a higher proportion of death.


Subject(s)
COVID-19/blood , Hyperferritinemia/blood , Phagocytosis , SARS-CoV-2/metabolism , Aged , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/complications , COVID-19/mortality , Female , Fibrin Fibrinogen Degradation Products/immunology , Fibrin Fibrinogen Degradation Products/metabolism , Hospital Mortality , Humans , Hyperferritinemia/etiology , Hyperferritinemia/immunology , Hyperferritinemia/mortality , Inflammation/blood , Inflammation/immunology , Inflammation/mortality , Interleukin-6/blood , Interleukin-6/immunology , Male , Middle Aged , Prevalence , Retrospective Studies , SARS-CoV-2/immunology
3.
Nat Commun ; 12(1): 6559, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514414

ABSTRACT

SARS-CoV-2 variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta) show increased transmissibility and enhanced antibody neutralization resistance. Here we demonstrate in K18-hACE2 transgenic mice that B.1.1.7 and B.1.351 are 100-fold more lethal than the original SARS-CoV-2 bearing 614D. B.1.1.7 and B.1.351 cause more severe organ lesions in K18-hACE2 mice than early SARS-CoV-2 strains bearing 614D or 614G, with B.1.1.7 and B.1.351 infection resulting in distinct tissue-specific cytokine signatures, significant D-dimer depositions in vital organs and less pulmonary hypoxia signaling before death. However, K18-hACE2 mice with prior infection of early SARS-CoV-2 strains or intramuscular immunization of viral spike or receptor binding domain are resistant to the lethal reinfection of B.1.1.7 or B.1.351, despite having reduced neutralization titers against these VOC than early strains. Our results thus distinguish pathogenic patterns in K18-hACE2 mice caused by B.1.1.7 and B.1.351 infection from those induced by early SARS-CoV-2 strains, and help inform potential medical interventions for combating COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/genetics , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Cytokines/immunology , Disease Models, Animal , Female , Fibrin Fibrinogen Degradation Products/immunology , Hypoxia/virology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
4.
Br J Haematol ; 196(4): 923-927, 2022 02.
Article in English | MEDLINE | ID: covidwho-1488181

ABSTRACT

Patients who are severely affected by coronavirus disease 2019 (COVID-19) may develop a delayed onset 'cytokine storm', which includes an increase in interleukin-6 (IL-6). This may be followed by a pro-thrombotic state and increased D-dimers. It was anticipated that tocilizumab (TCZ), an anti-IL-6 receptor monoclonal antibody, would mitigate inflammation and coagulation in patients with COVID-19. However, clinical trials with TCZ have recorded an increase in D-dimer levels. In contrast to TCZ, colchicine reduced D-dimer levels in patients with COVID-19. To understand how the two anti-inflammatory agents have diverse effects on D-dimer levels, we present data from two clinical trials that we performed. In the first trial, TCZ was administered (8 mg/kg) to patients who had a positive polymerase chain reaction test for COVID-19. In the second trial, colchicine was given (0·5 mg twice a day). We found that TCZ significantly increased IL-6, α-Defensin (α-Def), a pro-thrombotic peptide, and D-dimers. In contrast, treatment with colchicine reduced α-Def and Di-dimer levels. In vitro studies show that IL-6 stimulated the release of α-Def from human neutrophils but in contrast to colchicine, TCZ did not inhibit the stimulatory effect of IL-6; raising the possibility that the increase in IL-6 in patients with COVID-19 treated with TCZ triggers the release of α-Def, which promotes pro-thrombotic events reflected in an increase in D-dimer levels.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Colchicine/therapeutic use , Fibrin Fibrinogen Degradation Products/analysis , alpha-Defensins/immunology , Aged , Blood Coagulation/drug effects , COVID-19/blood , COVID-19/immunology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Female , Fibrin Fibrinogen Degradation Products/immunology , Humans , Interleukin-6/blood , Interleukin-6/immunology , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology
6.
Sci Rep ; 11(1): 13350, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1281743

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic viral disease affecting also obstetric patients and uncertainties exist about the prognostic role of inflammatory biomarkers and hemocytometry values in patients with this infection. To clarify that, we have assessed the values of several inflammatory biomarkers and hemocytometry variables in a cohort of obstetric patients hospitalized with COVID-19 and we have correlated the values at admission with the need of oxygen supplementation during the hospitalization. Overall, among 62 (27.3%) pregnant women and 165 (72.7%) postpartum women, 21 (9.2%) patients received oxygen supplementation and 2 (0.9%) required admission to intensive care unit but none died. During hospitalization leukocytes (p < 0.001), neutrophils (p < 0.001), neutrophils to lymphocytes ratio (p < 0.001) and C reactive protein (p < 0.001) decreased significantly, whereas lymphocytes (p < 0.001), platelets (p < 0.001) and ferritin (p = 0.001) increased. Lymphocyte values at admission were correlated with oxygen need, with a 26% higher risk of oxygen supplementation for each 1000 cells decreases. Overall, in obstetric patients hospitalized with COVID-19, C reactive protein is the inflammatory biomarker that better mirrors the course of the disease whereas D-dimer or ferritin are not reliable predictors of poor outcome. Care to the need of oxygen supplementation should be reserved to patients with reduced lymphocyte values at admission.


Subject(s)
C-Reactive Protein/immunology , COVID-19 , Fibrin Fibrinogen Degradation Products/immunology , Lymphocytes , Adult , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Lymphocytes/cytology , Lymphocytes/immunology , Pregnancy , Retrospective Studies
7.
Aging (Albany NY) ; 13(5): 6289-6297, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1134590

ABSTRACT

OBJECTIVES: To retrospectively evaluate the clinical and immunological characteristics of patients who died of COVID-19 and to identify patients at high risk of death at an early stage and reduce their mortality. RESULTS: Total white blood cell count, neutrophil count and C-reactive protein were significantly higher in patients who died of COVID-19 than those who recovered from it (p < 0.05), but the total lymphocyte count, CD4 + T cells, CD8 + T cells, B cells and natural killer cells were significantly lower when compared in the same groups. Multiple logistic regression analysis showed that increased D-dimer, decreased CD4 + T cells and increased neutrophils were risk factors for mortality. Further multiple COX regression demonstrated that neutrophil ≥ 5.27 × 109/L increased the risk of death in COVID-19 patients after adjustment for age and gender. However, CD4 + T cells ≥ 260/µL appeared to reduce the risk of death. CONCLUSION: SARS-CoV-2 infection led to a significant decrease of lymphocytes, and decreased CD4 + T cell count was a risk factor for COVID-19 patients to develop severe disease and death. METHODS: This study included 190 hospitalized COVID-19 patients from January 30, 2020 to March 4, 2020 in Wuhan, China, of whom 85 died and 105 recovered. Two researchers independently collected the clinical and laboratory data from electronic medical records.


Subject(s)
COVID-19/blood , COVID-19/immunology , Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , C-Reactive Protein/analysis , C-Reactive Protein/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/diagnosis , COVID-19/mortality , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/immunology , Humans , Killer Cells, Natural/immunology , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
9.
Int J Lab Hematol ; 43(2): 324-328, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-810884

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to be the causative agent of COVID-19, has led to a worldwide pandemic. At presentation, individual clinical laboratory blood values, such as lymphocyte counts or C-reactive protein (CRP) levels, may be abnormal and associated with disease severity. However, combinatorial interpretation of these laboratory blood values, in the context of COVID-19, remains a challenge. METHODS: To assess the significance of multiple laboratory blood values in patients with SARS-CoV-2 and develop a COVID-19 predictive equation, we conducted a literature search using PubMed to seek articles that included defined laboratory data points along with clinical disease progression. We identified 9846 papers, selecting primary studies with at least 20 patients for univariate analysis to identify clinical variables predicting nonsevere and severe COVID-19 cases. Multiple regression analysis was performed on a training set of patient studies to generate severity predictor equations, and subsequently tested on a validation cohort of 151 patients who had a median duration of observation of 14 days. RESULTS: Two COVID-19 predictive equations were generated: one using four variables (CRP, D-dimer levels, lymphocyte count, and neutrophil count), and another using three variables (CRP, lymphocyte count, and neutrophil count). In adult and pediatric populations, the predictive equations exhibited high specificity, sensitivity, positive predictive values, and negative predictive values. CONCLUSION: Using the generated equations, the outcomes of COVID-19 patients can be predicted using commonly obtained clinical laboratory data. These predictive equations may inform future studies evaluating the long-term follow-up of COVID-19 patients.


Subject(s)
C-Reactive Protein/metabolism , COVID-19/diagnosis , Fibrin Fibrinogen Degradation Products/metabolism , Neutrophils/pathology , SARS-CoV-2/pathogenicity , T-Lymphocytes/pathology , Automation, Laboratory , Biomarkers/analysis , C-Reactive Protein/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Female , Fibrin Fibrinogen Degradation Products/immunology , Hematology/instrumentation , Humans , Leukocyte Count , Male , Models, Statistical , Neutrophils/immunology , Neutrophils/virology , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/virology
10.
Eur J Immunol ; 50(9): 1283-1294, 2020 09.
Article in English | MEDLINE | ID: covidwho-670172

ABSTRACT

Studies on the interactions between SARS-CoV-2 and humoral immunity are fundamental to elaborate effective therapies including vaccines. We used polychromatic flow cytometry, coupled with unsupervised data analysis and principal component analysis (PCA), to interrogate B cells in untreated patients with COVID-19 pneumonia. COVID-19 patients displayed normal plasma levels of the main immunoglobulin classes, of antibodies against common antigens or against antigens present in common vaccines. However, we found a decreased number of total and naïve B cells, along with decreased percentages and numbers of memory switched and unswitched B cells. On the contrary, IgM+ and IgM- plasmablasts were significantly increased. In vitro cell activation revealed that B lymphocytes showed a normal proliferation index and number of dividing cells per cycle. PCA indicated that B-cell number, naive and memory B cells but not plasmablasts clustered with patients who were discharged, while plasma IgM level, C-reactive protein, D-dimer, and SOFA score with those who died. In patients with pneumonia, the derangement of the B-cell compartment could be one of the causes of the immunological failure to control SARS-Cov2, have a relevant influence on several pathways, organs and systems, and must be considered to develop vaccine strategies.


Subject(s)
Antibodies, Viral/blood , B-Lymphocytes/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Immunoglobulin Isotypes/blood , Lung/immunology , Pneumonia, Viral/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/classification , B-Lymphocytes/virology , Betacoronavirus/immunology , C-Reactive Protein/immunology , COVID-19 , Case-Control Studies , Cell Proliferation , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cross-Sectional Studies , Cytokines/genetics , Cytokines/immunology , Female , Fibrin Fibrinogen Degradation Products/immunology , Humans , Immunity, Humoral , Immunologic Memory , Lung/pathology , Lung/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Primary Cell Culture , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL