Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1536467

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
2.
Mitochondrion ; 61: 147-158, 2021 11.
Article in English | MEDLINE | ID: covidwho-1500157

ABSTRACT

The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , DNA Polymerase gamma/metabolism , DNA Replication/drug effects , DNA, Mitochondrial/biosynthesis , Fibroblasts/metabolism , SARS-CoV-2 , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , COVID-19/metabolism , Cells, Cultured , Humans
3.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470800

ABSTRACT

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Subject(s)
COVID-19/immunology , Epithelium/immunology , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Alarmins , Animals , Cellular Senescence , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunity , Inflammation/metabolism , Ligands , Necroptosis , Necrosis/pathology , Pulmonary Disease, Chronic Obstructive , SARS-CoV-2 , Signal Transduction
4.
mBio ; 12(4): e0157221, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1349194

ABSTRACT

Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe atypical pneumonia in infected individuals, but the underlying mechanisms of pathogenesis remain unknown. While much has been learned from the few reported autopsy cases, an in-depth understanding of the cells targeted by MERS-CoV in the human lung and their relative contribution to disease outcomes is needed. The host response in MERS-CoV-infected primary human lung microvascular endothelial (MVE) cells and fibroblasts (FB) was evaluated over time by analyzing total RNA, proteins, and lipids to determine the cellular pathways modulated postinfection. Findings revealed that MERS-CoV-infected MVE cells die via apoptotic mechanisms downstream of the unfolded protein response (UPR). Interruption of enzymatic processes within the UPR in MERS-CoV-infected male mice reduced disease symptoms, virus-induced lung injury, and time to recovery. These data suggest that the UPR plays an important role in MERS-CoV infection and may represent a host target for therapeutic intervention.


Subject(s)
Acute Lung Injury/pathology , Apoptosis/physiology , Coronavirus Infections/pathology , Unfolded Protein Response/physiology , Acute Lung Injury/virology , Animals , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/virology , Female , Fibroblasts/metabolism , Fibroblasts/virology , Humans , Male , Mice , Middle East Respiratory Syndrome Coronavirus/immunology
5.
J Ethnopharmacol ; 283: 114701, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1446835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY: The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS: We use TGF-ß1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS: The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS: Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal , Inflammation/drug therapy , Macrophages/drug effects , SARS-CoV-2 , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phytotherapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , RAW 264.7 Cells , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Immunology ; 163(3): 239-249, 2021 07.
Article in English | MEDLINE | ID: covidwho-1434725

ABSTRACT

Communication between stromal and immune cells is essential to maintain tissue homeostasis, mount an effective immune response and promote tissue repair. This 'crosstalk' occurs in both the steady state and following a variety of insults, for example, in response to local injury, at sites of infection or cancer. What do we mean by crosstalk between cells? Reciprocal activation and/or regulation occurs between immune and stromal cells, by direct cell contact and indirect mechanisms, including the release of soluble cytokines. Moving beyond cell-to-cell contact, this review investigates the complexity of 'cross-space' cellular communication. We highlight different examples of cellular communication by a variety of lung stromal and immune cells following tissue insults. This review examines how the 'geography of the lung microenvironment' is altered in various disease states; more specifically, we investigate how this influences lung epithelial cells and fibroblasts via their communication with immune cells and each other.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epithelial Cells/immunology , Fibroblasts/immunology , Lung/pathology , Stromal Cells/immunology , Animals , Cell Communication , Cellular Microenvironment , Humans , Immunity, Cellular
7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430892

ABSTRACT

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , Magnesium Chloride/pharmacology , Acyclovir/pharmacology , Adenoviruses, Human/drug effects , Adenoviruses, Human/physiology , Animals , Antiviral Agents/chemistry , CHO Cells , Cell Line, Tumor , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Fibroblasts , Heparin/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Humans , Magnesium Chloride/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Primary Cell Culture , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Structure-Activity Relationship , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
8.
Nat Rev Immunol ; 20(12): 718-719, 2020 12.
Article in English | MEDLINE | ID: covidwho-1428865
9.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
10.
Bioengineered ; 12(1): 4407-4419, 2021 12.
Article in English | MEDLINE | ID: covidwho-1373615

ABSTRACT

Widespread infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has led to a global pandemic. Currently, various approaches are being taken up to develop vaccines and therapeutics to treat SARS-CoV2 infection. Consequently, the S protein has become an important target protein for developing vaccines and therapeutics against SARS-CoV2. However, the highly infective nature of SARS-CoV2 restricts experimentation with the virus to highly secure BSL3 facilities. The availability of fusion-enabled, nonreplicating, and nonbiohazardous mimics of SARS-CoV2 virus fusion, containing the viral S or S and M protein in their native conformation on mammalian cells, can serve as a useful substitute for studying viral fusion for testing various inhibitors of viral fusion. This would avoid the use of the BSL3 facility for fusion studies required to develop therapeutics. In the present study, we have developed SARS-CoV2 virus fusion mimics (SCFMs) using mammalian cells transfected with constructs coding for S or S and M protein. The fusogenic property of the mimic(s) and their interaction with the functional human ACE2 receptors was confirmed experimentally. We have also shown that such mimics can easily be used in an inhibition assay. These mimic(s) can be easily prepared on a large scale, and such SCFMs can serve as an invaluable resource for viral fusion inhibition assays and in vitro screening of antiviral agents, which can be shared/handled between labs/facilities without worrying about any biohazard while working under routine laboratory conditions, avoiding the use of BSL3 laboratory.Abbreviations :SCFM: SARS-CoV2 Virus Fusion Mimic; ACE2: Angiotensin-Converting Enzyme 2; hACE2: Human Angiotensin-Converting enzyme 2; MEF: Mouse Embryonic Fibroblasts; HBSS: Hanks Balanced Salt Solution; FBS: Fetal Bovine Serum.


Subject(s)
Antibodies, Neutralizing/pharmacology , Containment of Biohazards/methods , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Viral Matrix Proteins/antagonists & inhibitors , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Embryo, Mammalian , Fibroblasts/drug effects , Fibroblasts/virology , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , MCF-7 Cells , Mice , Molecular Mimicry , Plasmids/chemistry , Plasmids/metabolism , Primary Cell Culture , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transfection , Vero Cells , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
12.
Mol Ther ; 29(10): 3042-3058, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1331299

ABSTRACT

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFß, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.


Subject(s)
Cellular Reprogramming/genetics , Genetic Therapy/methods , Ischemia/therapy , Muscle, Skeletal/blood supply , Myocardial Infarction/therapy , Neovascularization, Physiologic/genetics , Regeneration/genetics , Transfection/methods , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Knockout, ApoE , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics
13.
Eur J Pharmacol ; 908: 174374, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1322083

ABSTRACT

The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.


Subject(s)
COVID-19/drug therapy , Chloroquine/pharmacology , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Chloroquine/therapeutic use , Datasets as Topic , Down-Regulation/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Drug Synergism , Dual Specificity Phosphatase 1/metabolism , Fibroblasts , Glucocorticoids/therapeutic use , Healthy Volunteers , Humans , Lung/cytology , Lung/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Middle Aged , Nasopharynx/virology , Off-Label Use , Primary Cell Culture , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
14.
DNA Repair (Amst) ; 106: 103180, 2021 10.
Article in English | MEDLINE | ID: covidwho-1313048

ABSTRACT

Since the early stages of the pandemic, hydroxychloroquine (HCQ), a widely used drug with good safety profile in clinic, has come to the forefront of research on drug repurposing for COVID-19 treatment/prevention. Despite the decades-long use of HCQ in the treatment of diseases, such as malaria and autoimmune disorders, the exact mechanisms of action of this drug are only beginning to be understood. To date, no data are available on the genotoxic potential of HCQ in vitro or in vivo. The present study is the first investigation of the DNA damaging- and mutagenic effects of HCQ in mammalian cells in vitro, at concentrations that are comparable to clinically achievable doses in patient populations. We demonstrate significant induction of a representative oxidative DNA damage (8-oxodG) in primary mouse embryonic fibroblasts (MEFs) treated with HCQ at 5 and 25 µM concentrations (P = 0.020 and P = 0.029, respectively), as determined by enzyme-linked immunosorbent assay. Furthermore, we show significant mutagenicity of HCQ, manifest as 2.2- and 1.8-fold increases in relative cII mutant frequency in primary and spontaneously immortalized Big Blue® MEFs, respectively, treated with 25 µM dose of this drug (P = 0.005 and P = 0.012, respectively). The observed genotoxic effects of HCQ in vitro, achievable at clinically relevant doses, are novel and important, and may have significant implications for safety monitoring in patient populations. Given the substantial number of the world's population receiving HCQ for the treatment of various chronic diseases or in the context of clinical trials for COVID-19, our findings warrant further investigations into the biological consequences of therapeutic/preventive use of this drug.


Subject(s)
Hydroxychloroquine/pharmacology , Mutation/drug effects , Oxidative Stress/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning/methods , Fibroblasts/drug effects , Fibroblasts/virology , Mammals/virology , Mice , Mice, Inbred C57BL , Pandemics/prevention & control , SARS-CoV-2/drug effects
16.
Commun Biol ; 4(1): 631, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1283664

ABSTRACT

IL22 is an important cytokine involved in the intestinal defense mechanisms against microbiome. By using ileum-derived organoids, we show that the expression of anti-microbial peptides (AMPs) and anti-viral peptides (AVPs) can be induced by IL22. In addition, we identified a bacterial and a viral route, both leading to IL22 production by T cells, but via different pathways. Bacterial products, such as LPS, induce enterocyte-secreted SAA1, which triggers the secretion of IL6 in fibroblasts, and subsequently IL22 in T cells. This IL22 induction can then be enhanced by macrophage-derived TNFα in two ways: by enhancing the responsiveness of T cells to IL6 and by increasing the expression of IL6 by fibroblasts. Viral infections of intestinal cells induce IFNß1 and subsequently IL7. IFNß1 can induce the expression of IL6 in fibroblasts and the combined activity of IL6 and IL7 can then induce IL22 expression in T cells. We also show that IL22 reduces the expression of viral entry receptors (e.g. ACE2, TMPRSS2, DPP4, CD46 and TNFRSF14), increases the expression of anti-viral proteins (e.g. RSAD2, AOS, ISG20 and Mx1) and, consequently, reduces the viral infection of neighboring cells. Overall, our data indicates that IL22 contributes to the innate responses against both bacteria and viruses.


Subject(s)
Interleukins/biosynthesis , Interleukins/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antiviral Agents/metabolism , Cell Culture Techniques , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Enterocytes/immunology , Enterocytes/metabolism , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Interleukins/immunology , Intestinal Mucosa/metabolism , Intestines/physiology , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organoids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
17.
Arch Oral Biol ; 129: 105201, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1275142

ABSTRACT

OBJECTIVE: The aim of this in vitro study was to investigate the expression of SARS-CoV-2 entry and processing genes in human gingival fibroblasts (HGnF) following treatment with Porphyromonas gingivalis-derived lipopolysaccharide (PgLPS) or inflammatory cytokines/mediators. DESIGN: We assessed the expression of SARS-CoV-2 entry and processing genes; angiotensin-converting enzyme 2 (ACE2), cellular serine proteases transmembrane serine protease 2 (TMPRSS2), Furin, and basigin (BSG) in HGnF by real-time PCR. To further asses the contribution of PgLPS and inflammatory cytokines/mediators to proliferation and SARS-CoV-2 entry and processing gene expression, HGnF were treated with PgLPS, IL1ß, TNFα, and PGE2. RESULTS: The expression for ACE2 in HGnF was significantly elevated after PgLPS or IL1ß, TNFα, PGE2 treatment. The expression of TMPRSS2 was increased by PgLPS, IL1ß, or PGE2 while BSG was elevated by PgLPS and IL1ß. The expression of BSG and FURIN decreased after TNFα treatment. CONCLUSION: SARS-CoV-2 entry and processing genes are expressed in human gingival fibroblasts and their expressions are altered by PgLPS, IL1ß, TNFα and PGE2 treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokines , Fibroblasts , Humans , Lipopolysaccharides/pharmacology , Porphyromonas gingivalis , Prostaglandins , Prostaglandins E
18.
Eur J Immunol ; 51(9): 2330-2340, 2021 09.
Article in English | MEDLINE | ID: covidwho-1261763

ABSTRACT

The molecular mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein was characterized to identify novel therapies. The impact of tofacitinib, IL-6R Ab, or TNFi therapy was determined on Spike protein or LPS/IFN-γ-induced signaling, inflammation, and metabolic reprogramming in MΦs and/or rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS). ACE2 frequency was markedly expanded in MΦs compared to T cells and RA FLS. Tofacitinib suppresses Spike protein potentiated STAT1 signaling, whereas this function was unchanged by TNFi. Tofacitinib impairs IL-6/IFN/LPS-induced STAT1 and STAT3 phosphorylation in RA MΦs and FLS. Interestingly, tofacitinib had a broader inhibitory effect on the monokines, glycolytic regulators, or oxidative metabolites compared to IL-6R Ab and TNFi in Spike-protein-activated MΦs. In contrast, all three therapies disrupted IFN-α and IFN-ß secretion in response to Spike protein; nonetheless, the IFN-γ was only curtailed by tofacitinib or IL-6R Ab. While tofacitinib counteracted MΦ metabolic rewiring instigated by Spike protein, it was inconsequential on the glycolysis expansion mediated via HK2 and/or LDHA in the activated RA MΦ and FLS. Nevertheless, the potentiated inflammatory response and the diminished oxidative phosphorylation modulated by Spike protein and/or LPS/IFN-γ stimulation in MΦs or RA FLS were reversed by tofacitinib. In conclusion, tofacitinib suppresses MΦ inflammation and immunometabolism triggered by Spike protein and may provide a promising strategy for COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Macrophages/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Arthritis, Rheumatoid/metabolism , COVID-19/metabolism , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Receptors, Interleukin-6/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
19.
SLAS Discov ; 26(9): 1091-1106, 2021 10.
Article in English | MEDLINE | ID: covidwho-1255878

ABSTRACT

Lung imaging and autopsy reports among COVID-19 patients show elevated lung scarring (fibrosis). Early data from COVID-19 patients as well as previous studies from severe acute respiratory syndrome, Middle East respiratory syndrome, and other respiratory disorders show that the extent of lung fibrosis is associated with a higher mortality, prolonged ventilator dependence, and poorer long-term health prognosis. Current treatments to halt or reverse lung fibrosis are limited; thus, the rapid development of effective antifibrotic therapies is a major global medical need that will continue far beyond the current COVID-19 pandemic. Reproducible fibrosis screening assays with high signal-to-noise ratios and disease-relevant readouts such as extracellular matrix (ECM) deposition (the hallmark of fibrosis) are integral to any antifibrotic therapeutic development. Therefore, we have established an automated high-throughput and high-content primary screening assay measuring transforming growth factor-ß (TGFß)-induced ECM deposition from primary human lung fibroblasts in a 384-well format. This assay combines longitudinal live cell imaging with multiparametric high-content analysis of ECM deposition. Using this assay, we have screened a library of 2743 small molecules representing approved drugs and late-stage clinical candidates. Confirmed hits were subsequently profiled through a suite of secondary lung fibroblast phenotypic screening assays quantifying cell differentiation, proliferation, migration, and apoptosis. In silico target prediction and pathway network analysis were applied to the confirmed hits. We anticipate this suite of assays and data analysis tools will aid the identification of new treatments to mitigate against lung fibrosis associated with COVID-19 and other fibrotic diseases.


Subject(s)
COVID-19/drug therapy , Drug Discovery , Lung/diagnostic imaging , Small Molecule Libraries/pharmacology , Apoptosis/drug effects , COVID-19/epidemiology , COVID-19/virology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Fibroblasts/drug effects , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Mass Screening , Pandemics , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects
20.
BMC Med Genomics ; 14(1): 138, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1241103

ABSTRACT

BACKGROUND: Older aged adults and those with pre-existing conditions are at highest risk for severe COVID-19 associated outcomes. METHODS: Using a large dataset of genome-wide RNA-seq profiles derived from human dermal fibroblasts (GSE113957) we investigated whether age affects the expression of pattern recognition receptor (PRR) genes and ACE2, the receptor for SARS-CoV-2. RESULTS: Extremes of age are associated with increased expression of selected PRR genes, ACE2 and four genes that encode proteins that have been shown to interact with SAR2-CoV-2 proteins. CONCLUSIONS: Assessment of PRR expression might provide a strategy for stratifying the risk of severe COVID-19 disease at both the individual and population levels.


Subject(s)
COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , Receptors, Pattern Recognition/genetics , Receptors, Virus/genetics , SARS-CoV-2/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Dermis/pathology , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Middle Aged , RNA-Seq , Receptors, Virus/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...