Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Int J Environ Res Public Health ; 19(22)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2116036

ABSTRACT

As a result of the COVID-19 pandemic, many new materials and masks came onto the market. To determine their suitability, several standards specify which properties to test, including bacterial filtration efficiency (BFE), while none describe how to determine viral filtration efficiency (VFE), a property that is particularly important in times of pandemic. Therefore, we focused our research on evaluating the suitability and efficiency of different systems for determining VFE. Here, we evaluated the VFE of 6 mask types (e.g., a surgical mask, a respirator, material for mask production, and cloth masks) with different filtration efficiencies in four experimental setups and compared the results with BFE results. The study included 17 BFE and 22 VFE experiments with 73 and 81 mask samples tested, respectively. We have shown that the masks tested had high VFE (>99% for surgical masks and respirators, ≥98% for material, and 87-97% for cloth masks) and that all experimental setups provided highly reproducible and reliable VFE results (coefficient of variation < 6%). Therefore, the VFE tests described in this study can be integrated into existing standards for mask testing.


Subject(s)
COVID-19 , Masks , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Filtration , Ventilators, Mechanical
4.
Int J Environ Res Public Health ; 19(18)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2047304

ABSTRACT

This study introduces a principle that unifies two experimental methods for evaluating airborne indoor virus-transmissions adapted to several ventilation measures. A first-time comparison of mechanical/natural ventilation and air purification with regard to infection risks is enabled. Effortful computational fluid dynamics demand detailed boundary conditions for accurate calculations of indoor airflows, which are often unknown. Hence, a suitable, simple and generalized experimental set up for identifying the spatial and temporal infection risk for different ventilation measures is more qualified even with unknown boundary conditions. A trace gas method is suitable for mechanical and natural ventilation with outdoor air exchange. For an accurate assessment of air purifiers based on filtration, a surrogate particle method is appropriate. The release of a controlled rate of either trace gas or particles simulates an infectious person releasing virus material. Surrounding substance concentration measurements identify the neighborhood exposure. One key aspect of the study is to prove that the requirement of concordant results of both methods is fulfilled. This is the only way to ensure that the comparison of different ventilation measures described above is reliable. Two examples (a two-person office and a classroom) show how practical both methods are and how the principle is applicable for different types and sizes of rooms.


Subject(s)
Air Filters , Air Pollution, Indoor , Aerosols , Air Pollution, Indoor/analysis , Filtration , Humans , Ventilation
5.
Sci Rep ; 12(1): 16796, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2062253

ABSTRACT

Due to the SARS-CoV-2 outbreak, wearing a disposable face mask has become a worldwide daily routine, not only for medical operators or specialized personnel, but also for common people. Notwithstanding the undeniable positive effect in reducing the risk of virus transmission, it is important to understand if a prolonged usage of the same face mask can have effectiveness on filtering capability and potential health consequences. To this aim, we present three investigations. A survey, carried out in central Italy, offers an overview of the distorted public awareness of face mask usage. A functional study shows how prolonged wearing leads to substantial drops in humid air filtration efficiency. Finally, a morphological analysis reports the proliferation of fungal or bacteria colonies inside an improperly used mask. Our study highlights therefore that wearing a face mask is really beneficial only if it is used correctly.


Subject(s)
COVID-19 , Masks , COVID-19/epidemiology , COVID-19/prevention & control , Filtration , Humans , Masks/adverse effects , SARS-CoV-2 , Surveys and Questionnaires
6.
Indoor Air ; 32(9): e13103, 2022 09.
Article in English | MEDLINE | ID: covidwho-2052595

ABSTRACT

The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 µm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Aircraft , COVID-19/prevention & control , Dust , Filtration , Humans , Polymers , Respiratory Aerosols and Droplets
7.
Sci Rep ; 12(1): 15853, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2050532

ABSTRACT

Can medical face masks be replaced by reusable community face masks with similar performance? The influence of the number of wash cycles, the wash temperature and the use of detergent was evaluated on the performance of one medical face masks (MFM) and ten community face masks (CFM). The performance of the new and washed masks was characterized from the bacterial filtration efficiency (BFE) and the differential pressure (DP). The tests on the new masks showed that the MFM had always better BFE than CFMs. Although two of the CFMs showed a BFE value exceeding 95%, only one can be classified as type I MFM based on both BFE and DP requirements. The influence of the washing parameters was investigated on the MFM and these two CMFs with excellent BFE properties. The parameters had no effect on the BFE of CFMs whilst the MFM exhibited a loss in efficiency when washed with detergent. The DP of masks were not impacted by the washing. The results clearly show that even though a compromise has to be made between the BFE and breathability, it seems possible to manufacture CFMs with performances similar to a type I MFM, without achieving type II requirements.


Subject(s)
COVID-19 , Masks , Detergents , Filtration , Humans
8.
ACS Appl Mater Interfaces ; 14(41): 46123-46144, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2050253

ABSTRACT

In recent times, the use of personal protective equipment, such as face masks or respirators, is becoming more and more critically important because of common pollution; furthermore, face masks have become a necessary element in the global fight against the COVID-19 pandemic. For this reason, the main mission of scientists has become the development of face masks with exceptional properties that will enhance their performance. The versatility of electrospun polymer nanofibers has determined their suitability as a material for constructing "smart" filter media. This paper provides an overview of the research carried out on nanofibrous filters obtained by electrospinning. The progressive development of the next generation of face masks whose unique properties can be activated in response to a specific external stimulus is highlighted. Thanks to additional components incorporated into the fiber structure, filters can, for example, acquire antibacterial or antiviral properties, self-sterilize the structure, and store the energy generated by users. Despite the discovery of several fascinating possibilities, some of them remain unexplored. Stimuli-responsive filters have the potential to become products of large-scale availability and great importance to society as a whole.


Subject(s)
COVID-19 , Masks , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Filtration , Nanotechnology , Antiviral Agents , Anti-Bacterial Agents , Polymers
9.
Comput Methods Programs Biomed ; 226: 107154, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041634

ABSTRACT

BACKGROUND AND OBJECTIVE: Recommendations for the use of face masks to prevent and protect against the aerosols (≤5µm) and respiratory droplet particles (≥5µm), which can carry and transmit respiratory infections including severe acute respiratory syndrome coronavirus (SARS-CoV-2), have been in effect since the early stages of the coronavirus disease 2019 (COVID-19). The particle filtration efficiency (PFE) and air permeability are the most crucial factors affecting the level of pathogen transmission and breathability, i.e. wearer comfort, which should be investigated in detail. METHODS: In this context, this article presents a novel assessment framework for face masks combining X-ray microtomography and computational fluid dynamics simulations. In consideration to their widespread public use, two types of face masks were assessed: (I) two layer non-woven face masks and (II) the surgical masks (made out of a melt-blown fabric layer covered with two non-woven fabric layers). RESULTS: The results demonstrate that the surgical masks provide PFEs over 75% for particles with diameter over 0.1µm while two layer face masks are found out to have insufficient PFEs, even for the particles with diameter over 2µm (corresponding PFE is computed as 47.2%). Thus, existence of both the non-woven fabric layers for mechanical filtration and insertion of melt-blown fabric layer(s) for electrostatic filtration in the face masks were found to be highly critical to prevent the airborne pathogen transmission. CONCLUSIONS: The present framework would assist in computational assessment of commonly used face mask types based on their microstructural characteristics including fiber diameter, orientation distributions and fiber network density. Therefore, it would be also possible to provide new yet feasible design routes for face masks to ensure reliable personal protection and optimal breathability.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2 , COVID-19/prevention & control , Masks , Respiratory Aerosols and Droplets , Filtration
10.
Indoor Air ; 32(8): e13099, 2022 08.
Article in English | MEDLINE | ID: covidwho-2005271

ABSTRACT

Particle size removal efficiencies for 0.1-1.0 µm ( PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ ) and 0.3-1.0 µm ( PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ ) diameter of Minimum Efficiency Reporting Value (MERV) filters, an electrostatic enhanced air filter (EEAF), and their two-stage filtration systems were evaluated. Considering the most penetrating particle size was 0.1-0.4 µm particulate matter (PM), the PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as an evaluation parameter deserves more attention during the COVID-19 pandemic, compared to the PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ . The MERV 13 filters were recommended for a single-stage filtration system because of their superior quality factor (QF) compared to MERV 6, MERV 8, MERV 11 filters, and the EEAF. Combined MERV 8 + MERV 11 filters have the highest QF compared to MERV 6 + MERV 11 filters and EEAF + MERV 11 filters; regarding 50% of PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ as the filtration requirements of two-stage filtration systems, the MERV 8 + MERV 11 filtration system can achieve this value at 1.0 m/s air velocity, while PSE 0.1 - 1.0 $$ {PSE}_{0.1-1.0} $$ values were lower than 50% at 1.5 m/s and 2.0 m/s. EEAF obtained a better PSE 0.3 - 1.0 $$ {PSE}_{0.3-1.0} $$ in the full-recirculated test rig than in the single-pass mode owing to active ionization effects when EEAF was charged by alternating current.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Air Conditioning , Air Pollution, Indoor/analysis , Filtration , Heating , Humans , Pandemics , Respiration , Ventilation
11.
J Occup Environ Hyg ; 19(10-11): 615-628, 2022.
Article in English | MEDLINE | ID: covidwho-1991950

ABSTRACT

The use of filtering facepiece respirators (FFRs) of various types increased dramatically by both workers and the public during the ongoing COVID-19 pandemic. This increased use has, likewise, instigated a proliferation of research on the qualities of FFRs. An aspect of FFR development and optimization involves the use of mathematical models that predict filter efficiency based on various filter characteristics while also considering a number of particle capture forces. An evaluation of current literature failed to identify a publication that provides a comprehensive assessment of the models developed to predict filter efficiency. The purpose of this review was, therefore, to describe models developed to include the forces associated with diffusion, interception, impaction, and electrostatic attraction as they contribute to the efficiency of an entire filter. The literature review was augmented with figures created with the use of many of the models discussed to compare different models of the same force as well as to illustrate the influence of electrostatic forces on overall filter efficiency.


Subject(s)
Air Pollutants, Occupational , COVID-19 , Respiratory Protective Devices , United States , Humans , Air Pollutants, Occupational/analysis , National Institute for Occupational Safety and Health, U.S. , Particle Size , Pandemics/prevention & control , Filtration , Materials Testing/methods , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Ventilators, Mechanical
12.
PLoS One ; 17(6): e0268542, 2022.
Article in English | MEDLINE | ID: covidwho-1987130

ABSTRACT

Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40-400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 × 14 × 8 cm achieved filtration efficiencies of 98% at 95 L/min and 99.5% at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.


Subject(s)
COVID-19 , Respiratory Protective Devices , Aerosols , COVID-19/prevention & control , Equipment Design , Filtration/methods , Humans , Masks , Materials Testing/methods , Polyesters
13.
mSphere ; 7(4): e0008622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1986334

ABSTRACT

Coronavirus disease 2019 (COVID-19) spreads by airborne transmission; therefore, the development and functional evaluation of air-cleaning technologies are essential for infection control. Air filtration using high-efficiency particulate air (HEPA) filters may be effective; however, no quantitative assessment of the effectiveness of these filters in the removal of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the air has been reported. To evaluate the removal effect of HEPA filtration on airborne SARS-CoV-2, here, we disseminated infectious SARS-CoV-2 aerosols in a test chamber in a biosafety level 3 facility and filtered the air with a HEPA-filtered air cleaner in the chamber. The air cleaner with the HEPA filter continuously removed the infectious SARS-CoV-2 from the air in a running-time-dependent manner, and the virus capture ratios were 85.38%, 96.03%, and >99.97% at 1, 2, and 7.1 ventilation volumes, respectively. The air-cleaning performance of a HEPA filter coated with an antiviral agent consisting mainly of a monovalent copper compound was also evaluated, and the capture ratio was found to be comparable to that of the conventional HEPA filter. This study provides insights into the proper use and performance of HEPA-filtered air cleaners to prevent the spread of COVID-19. IMPORTANCE Air filtration simulation experiments quantitatively showed that an air cleaner equipped with a HEPA filter can continuously remove SARS-CoV-2 from the air. The capture ratios for SARS-CoV-2 in the air when the air cleaner was equipped with an antiviral-agent-coated HEPA filter were comparable to those with the conventional HEPA filter, and there was little effect on SARS-CoV-2 in the air that passed through the antiviral-reagent-coated HEPA filter.


Subject(s)
COVID-19 , SARS-CoV-2 , Air Conditioning , Antiviral Agents , COVID-19/prevention & control , Filtration , Humans
14.
Nano Lett ; 22(16): 6744-6752, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1984351

ABSTRACT

To prevent interhuman transmission of viruses, new mask types─claiming improved filtration─require careful performance characterization. Here, a microfluidic spray device that can effectively simulate droplets emitted during coughing or sneezing was developed to spray droplets containing gold nanoparticles (AuNPs) that mimic SARS-CoV-2 to overcome the shortcomings associated with using biosamples. The light scattered by the AuNPs passing through the mask is successfully analyzed by using an automated scattering light mapping system within a duration of 2 min, thereby enabling high-throughput analysis of the filtering efficiency of various types of commercial masks. The differences in efficiency in terms of same mask type from different manufacturers, double masking, and prolonged usage, which are challenging to analyze with conventional testing systems, can also be assessed. AuNP-mediated mask performance evaluation enables the rapid determination of mask efficiency according to particle size and can contribute to the rapid response to counter new emerging infectious biohazards.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/prevention & control , Filtration , Gold , Humans , Masks , Microfluidics , SARS-CoV-2 , Virion
15.
J Hazard Mater ; 422: 126783, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1347177

ABSTRACT

We designed a novel experimental set-up to pseudo-simultaneously measure size-segregated filtration efficiency (ηF), breathing resistance (ηP) and potential usage time (tB) for 11 types of face protective equipment (FPE; four respirators; three medical; and four handmade) in the submicron range. As expected, the highest ηF was exhibited by respirators (97 ± 3%), followed by medical (81 ± 7%) and handmade (47 ± 13%). Similarly, the breathing resistance was highest for respirators, followed by medical and handmade FPE. Combined analysis of efficiency and breathing resistance highlighted trade-offs, i.e. respirators showing the best overall performance across these two indicators, followed by medical and handmade FPE. This hierarchy was also confirmed by quality factor, which is a performance indicator of filters. Detailed assessment of size-segregated aerosols, combined with the scanning electron microscope imaging, revealed material characteristics such as pore density, fiber thickness, filter material and number of layers influence their performance. ηF and ηP showed an inverse exponential decay with time. Using their cross-over point, in combination with acceptable breathability, allowed to estimate tB as 3.2-9.5 h (respirators), 2.6-7.3 h (medical masks) and 4.0-8.8 h (handmade). While relatively longer tB of handmade FPE indicate breathing comfort, they are far less efficient in filtering virus-laden submicron aerosols compared with respirators.


Subject(s)
Masks , Respiratory Protective Devices , Aerosols , Filtration , Particle Size
16.
Biotechnol Bioeng ; 119(11): 3221-3229, 2022 11.
Article in English | MEDLINE | ID: covidwho-1971242

ABSTRACT

The COVID-19 pandemic has generated growing interest in the development of mRNA-based vaccines and therapeutics. However, the size and properties of the lipid nanoparticles (LNPs) used to deliver the nucleic acids can lead to unique phenomena during manufacturing that are not typical of other biologics. The objective of this study was to develop a more fundamental understanding of the factors controlling the performance of sterile filtration of mRNA-LNPs. Experimental filtration studies were performed with a Moderna mRNA-LNP solution using a commercially available dual-layer polyethersulfone sterile filter, the Sartopore 2 XLG. Unexpectedly, increasing the transmembrane pressure (TMP) from 2 to 20 psi provided more than a twofold increase in filter capacity. Also surprisingly, the effective resistance of the fouled filter decreased with increasing TMP, in contrast to the pressure-independent behavior expected for an incompressible media and the increase in resistance typically seen for a compressible fouling deposit. The mRNA-LNPs appear to foul the dual-layer filter by blocking the pores in the downstream sterilizing-grade membrane layer, as demonstrated both by scanning electron microscopy and derivative analysis of filtration data collected for the two layers independently. These results provide important insights into the mechanisms governing the filtration of mRNA-LNP vaccines and therapeutics.


Subject(s)
Biological Products , COVID-19 , Nanoparticles , Vaccines , Filtration/methods , Humans , Liposomes , Pandemics , RNA, Messenger/genetics
17.
J Hosp Infect ; 127: 91-100, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914598

ABSTRACT

BACKGROUND: Aerosol-borne diseases such as COVID-19 may outbreak occasionally in various regions of the world, inevitably resulting in short-term shortage and corresponding reuse of disposable respirators. AIM: To investigate the effective disinfection methods, reusable duration and frequency of N95 respirators. METHODS: Based on the self-built respirator simulation test system, and under combinations of experimental conditions of three N95 respirators × 0-200 nm NaCl aerosols × three simulated breathing flow rates (15, 50 and 85 L/min) × two disinfection methods (dry heating and ultraviolet (UV) radiation), this study continuously measured the changes in filtration efficiency of all respirators during multi-cycles of '8-h simulated donning + disinfection' until the penetration reached ≥5%. FINDINGS: Multi-cycles of dry heating and UV radiation treatments on the reused (i.e., multiple 8-h donning) N95 respirators had a minimal effect (<0.5%) on the respirator filtration efficiency, and even at 85 L/min, all tested N95 respirators were able to maintain filtration efficiencies ≥95% for at least 30 h or four reuse cycles of '8-h donning + disinfection', while a lower breathing flow rate (15 L/min) plus the exhalation valve could further extend the N95 respirator's usability duration up to 140 h or 18 reuse cycles of '8-h donning + disinfection'. As the respirator wearing time extended, aerosol penetration slowly increased in a quadratic function with a negative second-order coefficient, and the penetration increment during each cycle of 8-h donning was less than 0.9%. CONCLUSION: Multi-cycles of N95 respirator reuse in combination with dry heating or UV irradiation disinfection are feasible.


Subject(s)
COVID-19 , Respiratory Protective Devices , COVID-19/prevention & control , Disinfection/methods , Filtration , Humans , N95 Respirators , Respiratory Aerosols and Droplets
18.
PLoS One ; 17(3): e0264991, 2022.
Article in English | MEDLINE | ID: covidwho-1910556

ABSTRACT

PM2.5, particulate matter less than 2.5 microns, is the leading contributor to air pollution which results in cardio-vascular and respiratory diseases. Recent studies also indicate a strong correlation between ambient air pollution and COVID-19 cases, which have affected the lives of billions of people globally. Abatement technologies such as ionic and other high efficiency filtration systems are expensive and unaffordable in communities with limited resources. The goal of this study was to develop a mask with an optimized nanoparticle coating which has a dual capability of particulate matter and virus filtration, while being affordable and safe for human use. The nanoparticles were selected for their filtration and virucidal capabilities. Particle filtration efficiency, tested with a wind tunnel and PM2.5 from incense sticks measured by laser particle detectors, improved by ~60% with nanoparticle coatings on KN95 and surgical masks. Virus filtration efficiency, tested using nebulized NaCl particles as a virus surrogate, improved by 95% with coated masks. The nanoparticle retention efficacy, tested by simulating a normal 8-hour workday, was well within the permissible exposure limits. This technology has several applications such as in personal protective equipment for virus protection, and in air-conditioning and car cabin filters for pollution abatement. In conclusion, the chosen combination of nanoparticles provides an effective and safe solution for both particulate matter and viral particle filtration.


Subject(s)
Air Pollution , COVID-19 , Nanoparticles , Air Pollution/analysis , COVID-19/prevention & control , Filtration/methods , Humans , Masks , Particulate Matter
19.
Int J Environ Res Public Health ; 19(12)2022 06 11.
Article in English | MEDLINE | ID: covidwho-1896844

ABSTRACT

Filtering facepiece respirators have been widely used in the fields of occupational health and public hygiene, especially during the COVID-19 pandemic. In particular, disposable respirators have been in high demand, and the waste generated from these disposable products poses a problem for the environment. Here, we aimed to test a practical decontamination method to allow for the reuse of KN95 respirators. In this study, three types of KN95 respirators were heated at 80 °C and 90 °C for different durations (15 min, 30 min, 45 min, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, and 24 h). The filtration efficiencies of the tested KN95 respirators before and after heating were measured, and the changes in microstructure were imaged with a scanning electron microscope (SEM). In addition, a neural network model based on the nonlinear autoregressive with external input (NARX) to predict the filtration efficiency of the KN95 respirator was established. The results show that the temperature and time of dry heating affected particle prevention. The higher the temperature and the longer the heating time, the more obvious the decline in the filtration efficiency of the respirators. When the heating temperature reached 100 °C, the respirator may be no longer suitable for reuse. These results show that a dry heat temperature between 70 °C and 90 °C, and a heating time between 30 min and 2 h is assumed to be a suitable and effective decontamination method for respirators.


Subject(s)
COVID-19 , Respiratory Protective Devices , COVID-19/prevention & control , Decontamination/methods , Filtration , Hot Temperature , Humans , Pandemics/prevention & control , Ventilators, Mechanical
20.
Int J Environ Res Public Health ; 19(11)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1892857

ABSTRACT

The need to secure public health and mitigate the environmental impact associated with the massified use of respiratory protective devices (RPD) has been raising awareness for the safe reuse of decontaminated masks by individuals and organizations. Among the decontamination treatments proposed, in this work, three methods with the potential to be adopted by households and organizations of different sizes were analysed: contact with nebulized hydrogen peroxide (H2O2); immersion in commercial bleach (NaClO) (sodium hypochlorite, 0.1% p/v); and contact with steam in microwave steam-sanitizing bags (steam bag). Their decontamination effectiveness was assessed using reference microorganisms following international standards (issued by ISO and FDA). Furthermore, the impact on filtration efficiency, air permeability and several physicochemical and structural characteristics of the masks, were evaluated for untreated masks and after 1, 5 and 10 cycles of treatment. Three types of RPD were analysed: surgical, KN95, and cloth masks. Results demonstrated that the H2O2 protocol sterilized KN95 and surgical masks (reduction of >6 log10 CFUs) and disinfected cloth masks (reduction of >3 log10 CFUs). The NaClO protocol sterilized surgical masks, and disinfected KN95 and cloth masks. Steam bags sterilized KN95 and disinfected surgical and cloth masks. No relevant impact was observed on filtration efficiency.


Subject(s)
Decontamination , Respiratory Protective Devices , Decontamination/methods , Filtration , Humans , Hydrogen Peroxide , Permeability , Steam
SELECTION OF CITATIONS
SEARCH DETAIL