ABSTRACT
Viruses are dependent on interactions with host factors in order to efficiently establish an infection and replicate. Targeting such interactions provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking, and has previously been shown to be important for HPV infection. Here we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits SARS-CoV-2 infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection, and strongly reduced flavivirus infection, which are completely dependent on receptor mediated endocytosis for their entry. In conclusion, we have identified a novel pan-viral inhibitor that efficiently target a broad range of RNA viruses.
Subject(s)
COVID-19 , Infections , Flavivirus Infections , Chikungunya FeverABSTRACT
Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.
Subject(s)
Societies, Scientific , Virology , Animals , Anniversaries and Special Events , Antiviral Agents , COVID-19 , Flavivirus Infections/immunology , Herpesvirus 4, Human , Humans , Immunity , Pandemics , Prions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Zika VirusABSTRACT
SUMMARY Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection. TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes. TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.