Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1752773

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Subject(s)
COVID-19/metabolism , Lipid Metabolism/physiology , Lipids/analysis , Lung/metabolism , Nucleocapsid/analysis , SARS-CoV-2 , Adolescent , Aged , Animals , COVID-19/pathology , Child, Preschool , Chlorocebus aethiops , Disease Outbreaks , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Lung/cytology , Lung/pathology , Lung/ultrastructure , Male , Microscopy, Immunoelectron , Middle Aged , Nucleocapsid/metabolism , Rabbits , SARS-CoV-2/ultrastructure , Vero Cells/virology
2.
Viruses ; 12(5)2020 05 24.
Article in English | MEDLINE | ID: covidwho-1726014

ABSTRACT

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 µM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 µM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Hydroxychloroquine/pharmacology , Interferon Type I/pharmacology , Analysis of Variance , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cats , Cell Line/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , Drug Combinations , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Fluorescent Antibody Technique/veterinary , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/toxicity , Interferon Type I/therapeutic use , Interferon Type I/toxicity , Virulence
3.
Arch Virol ; 167(4): 1041-1049, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1709039

ABSTRACT

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, emerged as the cause of a global crisis in 2019. Currently, the main method for identification of SARS-CoV-2 is a reverse transcription (RT)-PCR assay designed to detect viral RNA in oropharyngeal (OP) or nasopharyngeal (NP) samples. While the PCR assay is considered highly specific and sensitive, this method cannot determine the infectivity of the sample, which may assist in evaluation of virus transmissibility from patients and breaking transmission chains. Thus, cell-culture-based approaches such as cytopathic effect (CPE) assays are routinely employed for the identification of infectious viruses in NP/OP samples. Despite their high sensitivity, CPE assays take several days and require additional diagnostic tests in order to verify the identity of the pathogen. We have therefore developed a rapid immunofluorescence assay (IFA) for the specific detection of SARS-CoV-2 in NP/OP samples following cell culture infection. Initially, IFA was carried out on Vero E6 cultures infected with SARS-CoV-2 at defined concentrations, and infection was monitored at different time points. This test was able to yield positive signals in cultures infected with 10 pfu/ml at 12 hours postinfection (PI). Increasing the incubation time to 24 hours reduced the detectable infective dose to 1 pfu/ml. These IFA signals occur before the development of CPE. When compared to the CPE test, IFA has the advantages of specificity, rapid detection, and sensitivity, as demonstrated in this work.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Fluorescent Antibody Technique , Humans , Nasopharynx , Pandemics , RNA, Viral/genetics , Sensitivity and Specificity
4.
Respir Res ; 23(1): 25, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1677511

ABSTRACT

BACKGROUND: Pulmonary hyperinflammation is a key event with SARS-CoV-2 infection. Acute respiratory distress syndrome (ARDS) that often accompanies COVID-19 appears to have worse outcomes than ARDS from other causes. To date, numerous lung histological studies in cases of COVID-19 have shown extensive inflammation and injury, but the extent to which these are a COVID-19 specific, or are an ARDS and/or mechanical ventilation (MV) related phenomenon is not clear. Furthermore, while lung hyperinflammation with ARDS (COVID-19 or from other causes) has been well studied, there is scarce documentation of vascular inflammation in COVID-19 lungs. METHODS: Lung sections from 8 COVID-19 affected and 11 non-COVID-19 subjects, of which 8 were acute respiratory disease syndrome (ARDS) affected (non-COVID-19 ARDS) and 3 were from subjects with non-respiratory diseases (non-COVID-19 non-ARDS) were H&E stained to ascertain histopathological features. Inflammation along the vessel wall was also monitored by expression of NLRP3 and caspase 1. RESULTS: In lungs from COVID-19 affected subjects, vascular changes in the form of microthrombi in small vessels, arterial thrombosis, and organization were extensive as compared to lungs from non-COVID-19 (i.e., non-COVID-19 ARDS and non-COVID-19 non-ARDS) affected subjects. The expression of NLRP3 pathway components was higher in lungs from COVID-19 ARDS subjects as compared to non-COVID-19 non-ARDS cases. No differences were observed between COVID-19 ARDS and non-COVID-19 ARDS lungs. CONCLUSION: Vascular changes as well as NLRP3 inflammasome pathway activation were not different between COVID-19 and non-COVID-19 ARDS suggesting that these responses are not a COVID-19 specific phenomenon and are possibly more related to respiratory distress and associated strategies (such as MV) for treatment.


Subject(s)
Blood Vessels/immunology , COVID-19/immunology , Inflammasomes/analysis , Lung/blood supply , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Aged , Aged, 80 and over , Autopsy , Blood Vessels/pathology , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged
5.
Sci Adv ; 8(5): eabl8920, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1673337

ABSTRACT

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Subject(s)
Dexamethasone/pharmacology , Dipeptidases/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation/drug effects , Glutathione/metabolism , Receptors, Glucocorticoid/metabolism , Carbolines/adverse effects , Carbolines/pharmacology , Cell Line , Dipeptidases/metabolism , Fluorescent Antibody Technique , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Knockdown Techniques , Humans , Immunophenotyping , Oxidation-Reduction/drug effects , Piperazines/adverse effects , Piperazines/pharmacology
6.
J Int Med Res ; 50(1): 3000605211069279, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1598885

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, antibody screening is a critical tool to assess anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. We examined variation in antibody titers associated with age and sex among patients with confirmed COVID-19. METHODS: Blood IgG levels were tested in 1081 patients with positive SARS-CoV-2 quantitative reverse transcription polymerase chain reaction (RT-qPCR) tests between 1 September and 31 December 2020. Patients who did not experience reinfection were identified. Serum IgG levels were measured by immunofluorescence assay. Antibody positivity and antibody titers were analyzed according to time since infection, sex, and age. RESULTS: The mean (standard deviation) age was 41.2 (14.2) years and 41.2% of patients were women. The lowest antibody positivity rate between the first and ninth month post-infection was detected in the sixth month. The lowest antibody titers among patients aged 20 to 80 years occurred in those aged 30 to 39 years. The IgG titer was positively correlated with age in years (r = 0.125) and decades (r = 0.126). CONCLUSIONS: Six months after infection, anti-SARS-CoV-2 antibody titers increased. Anti-SARS-CoV-2 antibody titers also increased with age. Immunity and pathogenicity should be investigated in addition to antibody positivity rates and antibody titers.


Subject(s)
COVID-19 , Adult , Antibodies, Viral , Female , Fluorescent Antibody Technique , Humans , Immunoglobulin G , Pandemics , SARS-CoV-2
7.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544318

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gastrointestinal Tract/virology , Genitalia/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Immune System/virology , Neuropilin-1/metabolism , Respiratory System/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Blotting, Western , COVID-19/metabolism , COVID-19/virology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gastrointestinal Tract/cytology , Genitalia/cytology , Humans , Immune System/cytology , Respiratory System/cytology
8.
J Med Virol ; 93(12): 6611-6618, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544309

ABSTRACT

The objective of this longitudinal cohort study was to determine the seroprevalence of antibodies to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in healthcare workers employed at healthcare settings in three rural counties in eastern South Dakota and western Minnesota from May 13, 2020, through December 22, 2020. Three blood draws were performed at five clinical sites and tested for the presence of antibodies against the SARS-CoV-2. Serum samples were tested for the presence of antibodies using a fluorescent microsphere immunoassay (FMIA), neutralization of SARS-CoV-2 spike-pseudotyped particles (SARS-CoV-2pp) assay, and serum virus neutralization (SVN) assay. The seroprevalence was determined to be 1/336 (0.29%) for samples collected from 5/13/20 to 7/13/20, 5/260 (1.92%) for samples collected from 8/13/20 to 9/25/20, and 35/235 (14.89%) for samples collected from 10/16/20 to 12/22/20. Eight of the 35 (22.8%) seropositive individuals identified in the final draw did not report a previous diagnosis with COVID-19. There was a high correlation (>90%) between the FMIA and virus neutralization assays. Each clinical site's seroprevalence was higher than the cumulative incidence for the general public in the respective county as reported by state public health agencies. As of December 2020, there was a high percentage (85%) of seronegative individuals in the study population.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Rural Health Services/statistics & numerical data , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Minnesota/epidemiology , Neutralization Tests , Seroepidemiologic Studies , South Dakota/epidemiology , Young Adult
9.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 4066-4074, 2021 Nov 25.
Article in Chinese | MEDLINE | ID: covidwho-1543003

ABSTRACT

Different fragments of SARS-CoV-2 nucleocapsid (N) protein were expressed and purified, and a fluorescence immunochromatography method for detection of SARS-CoV-2 total antibody was established. The effect of different protein fragments on the performance of the method was evaluated. The N protein sequence was analyzed by bioinformatics technology, expressed in prokaryotic cell and purified by metal ion affinity chromatography column. Different N protein fragments were prepared for comparison. EDC reaction was used to label fluorescence microsphere on the synthesized antigen to construct sandwich fluorescence chromatography antibody detection assay, and the performance was systemically evaluated. Among the 4 prepared N protein fragments, the full-length N protein (N419) was selected as the optimized coating antigen, N412 with 0.5 mol/L NaCl was used as the optimal combination; deleting 91-120 amino acids from the N-terminal of N412 reduced non-specific signal by 87.5%. the linear range of detection was 0.312-80 U/L, the limit of detection was 0.165 U/L, and the accuracy was more than 95%. A fluorescence immunochromatographic detection method for analysis of SARS-CoV-2 total antibody was established by pairing N protein fragments. The detection result achieved 98% concordance with the commercially available Guangzhou Wanfu test strip, which is expected to be used as a supplementary approach for detection of SARS-CoV-2. The assay could also provide experimental reference for improving the performance of COVID-19 antibody detection reagents.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Chromatography, Affinity , Fluorescent Antibody Technique , Humans , Microspheres , Sensitivity and Specificity
10.
Microbiol Spectr ; 9(3): e0113121, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1522926

ABSTRACT

Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (ρ = 0.77 to 0.84, P < 2.2 × 10-16) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (ρ = 0.95, P < 2.2 × 10-16). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Fluorescent Antibody Technique/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Humans , Nucleoproteins , Phosphoproteins/immunology , SARS-CoV-2 , Sensitivity and Specificity
12.
Am J Clin Pathol ; 157(4): 602-607, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1475766

ABSTRACT

OBJECTIVES: The LumiraDx SARS-CoV-2 Ag Test has previously been shown to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals symptomatic for coronavirus disease 2019 (COVID-19). This evaluation investigated the LumiraDx SARS-CoV-2 Ag Test as an aid in the diagnosis of SARS-CoV-2 infection in asymptomatic adults and children. METHODS: Asymptomatic individuals at high risk of COVID-19 infection were recruited in 5 point-of-care (POC) settings. Two paired anterior nasal swabs were collected from each participant, tested by using the LumiraDx SARS-CoV-2 Ag Test at the POC, and compared with results from reverse transcription-polymerase chain reaction (RT-PCR) assays (cobas 6800 [Roche Diagnostics] or TaqPath [Thermo Fisher Scientific]). We calculated positive percent agreement (PPA) and negative percent agreement (NPA), then stratified results on the basis of RT-PCR reference platform and cycle threshold. RESULTS: Of the 222 included study participants confirmed to be symptom-free for at least 2 weeks before testing, the PPA was 82.1% (95% confidence interval [CI], 64.4%-92.1%). The LumiraDx SARS-CoV-2 Ag Test correctly identified 95.8% (95% CI, 79.8%-99.3%) of the samples confirmed positive in fewer than 33 RT-PCR cycles and 100% (95% CI, 85.1%-100%) in fewer than 30 RT-PCR cycles while maintaining 100% NPA. CONCLUSIONS: This rapid, high-sensitivity test can be used to screen asymptomatic patients for acute SARS-CoV-2 infection in clinic- and community-based settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antigens, Viral/analysis , COVID-19/diagnosis , Child , Fluorescent Antibody Technique , Humans , Microfluidics , Point-of-Care Systems , Sensitivity and Specificity
13.
Mol Biotechnol ; 64(4): 339-354, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1469770

ABSTRACT

The outbreak of COVID-19 pandemic and its consequences have inflicted a substantial damage on the world. In this study, it was attempted to review the recent coronaviruses appeared among the human being and their epidemic/pandemic spread throughout the world. Currently, there is an inevitable need for the establishment of a quick and easily available biosensor for tracing COVID-19 in all countries. It has been known that the incubation time of COVID-19 lasts about 14 days and 25% of the infected individuals are asymptomatic. To improve the ability to determine SARS-CoV-2 precisely and reduce the risk of eliciting false-negative results produced by mutating nature of coronaviruses, many researchers have established a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using mismatch-tolerant molecular beacons as multiplex real-time RT-PCR to distinguish between pathogenic and non-pathogenic strains of coronaviruses. The possible mechanisms and pathways for the detection of coronaviruses by biosensors have been reviewed in this study.


Subject(s)
COVID-19 Testing/methods , Biosensing Techniques/methods , COVID-19 Testing/instrumentation , CRISPR-Cas Systems , Electrochemical Techniques , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique/methods , Humans , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Neutralization Tests , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Surface Plasmon Resonance
14.
mBio ; 12(5): e0131621, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1406604

ABSTRACT

Coronaviruses (CoVs) are emergent pathogens that may cause life-threatening respiratory diseases in humans. Understanding of CoV-host interactions may help to identify novel therapeutic targets. MOV10 is an RNA helicase involved in different steps of cellular RNA metabolism. Both MOV10 antiviral and proviral activities have been described in a limited number of viruses, but this protein has not been previously associated with CoVs. We found that during Middle East respiratory syndrome coronavirus (MERS-CoV) infection, MOV10 aggregated in cytoplasmic structures colocalizing with viral nucleocapsid (N) protein. MOV10-N interaction was confirmed by endogenous MOV10 coimmunoprecipitation, and the presence of other cellular proteins was also detected in MOV10 complexes. MOV10 silencing significantly increased both N protein accumulation and virus titer, with no changes in the accumulation of viral RNAs. Moreover, MOV10 overexpression caused a 10-fold decrease in viral titers. These data indicated that MOV10 has antiviral activity during MERS-CoV infection. We postulated that this activity could be mediated by viral RNA sequestration, and in fact, RNA immunoprecipitation data showed the presence of viral RNAs in the MOV10 cytoplasmic complexes. Expression of wild-type MOV10 or of a MOV10 mutant without helicase activity in MOV10 knockout cell lines, developed by CRISPR-Cas technology, indicated that the helicase activity of MOV10 was required for its antiviral effect. Interestingly MOV10-N interaction was conserved in other mildly or highly pathogenic human CoVs, including the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although MOV10 antiviral activity was found only in highly pathogenic CoVs, suggesting a potential role of MOV10 in the modulation of human CoVs pathogenesis. IMPORTANCE Coronaviruses (CoVs) are emerging pathogens causing life-threatening diseases in humans. Knowledge of virus-host interactions and viral subversion mechanisms of host pathways is required for the development of effective countermeasures against CoVs. The interaction between cellular RNA helicase MOV10 and nucleocapsid (N) protein from several human CoVs is shown. Using MERS-CoV as a model, we demonstrate that MOV10 has antiviral function, requiring its helicase activity, most likely mediated by viral RNA sequestration in cytoplasmic ribonucleoprotein structures. Furthermore, we found that MOV10 antiviral activity may act only in highly pathogenic human CoVs, suggesting a role for MOV10 in modulating CoVs pathogenesis. The present study uncovers a complex network of viral and cellular RNAs and proteins interaction modulating the antiviral response against CoVs.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Nucleocapsid Proteins/metabolism , RNA Helicases/metabolism , RNA Helicases/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Chlorocebus aethiops , Fluorescent Antibody Technique , Humans , Immunoprecipitation , RNA, Viral/metabolism , Vero Cells , Virus Replication/drug effects
15.
J Med Virol ; 93(9): 5608-5613, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363674

ABSTRACT

In this observational study, 13 patients with severe COVID-19 and 10 healthy controls were enrolled. The data concerning the analysis of circulating T cells show that, in severe COVID-19 patients, the expansion of these cell compartments is prone to induce antibody response, inflammation (CCR4+ and CCR6+ TFH) and regulation (CD8+ Treg). This pathogenic mechanism could lead us to envision a possible new form of biological target therapy.


Subject(s)
Antibodies, Viral/biosynthesis , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Receptors, CCR4 , Receptors, CCR6
16.
J Infect Dis ; 224(3): 395-406, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338702

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during COVID-19 and if monocytes and macrophages could be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Monocytes and monocyte-derived macrophages (MDMs) from COVID-19 patients and controls were infected with SARS-CoV-2 and extensively investigated with immunofluorescence, viral RNA extraction and quantification, and total RNA extraction followed by reverse-transcription quantitative polymerase chain reaction using specific primers, supernatant cytokines (interleukins 6, 10, and 1ß; interferon-ß; transforming growth factor-ß1, and tumor necrosis factor-α), and flow cytometry. The effect of M1- vs M2-type or no polarization prior to infection was assessed. RESULTS: SARS-CoV-2 efficiently infected monocytes and MDMs, but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In COVID-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. CONCLUSIONS: SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of COVID-19 progression.SARS-CoV-2 infection of macrophages induces a specific M2 transcriptional program. In Covid-19 patients, monocyte subsets were decreased associated with up-expression of the immunoregulatory molecule CD163 suggesting that SARS-CoV-2 drives immune system for the benefit of Covid-19 disease progression.


Subject(s)
COVID-19/immunology , Macrophages/virology , Monocytes/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Cytokines/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/immunology , Severity of Illness Index , Young Adult
17.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Article in English | MEDLINE | ID: covidwho-1330343

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gastrointestinal Tract/virology , Genitalia/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Immune System/virology , Neuropilin-1/metabolism , Respiratory System/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Blotting, Western , COVID-19/metabolism , COVID-19/virology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gastrointestinal Tract/cytology , Genitalia/cytology , Humans , Immune System/cytology , Respiratory System/cytology
18.
JAMA Ophthalmol ; 139(9): 1015-1021, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1330283

ABSTRACT

Importance: The presence of the SARS-CoV-2 virus in the retina of deceased patients with COVID-19 has been suggested through real-time reverse polymerase chain reaction and immunological methods to detect its main proteins. The eye has shown abnormalities associated with COVID-19 infection, and retinal changes were presumed to be associated with secondary microvascular and immunological changes. Objective: To demonstrate the presence of presumed SARS-CoV-2 viral particles and its relevant proteins in the eyes of patients with COVID-19. Design, Setting, and Participants: The retina from enucleated eyes of patients with confirmed COVID-19 infection were submitted to immunofluorescence and transmission electron microscopy processing at a hospital in São Paulo, Brazil, from June 23 to July 2, 2020. After obtaining written consent from the patients' families, enucleation was performed in patients deceased with confirmed SARS-CoV-2 infection. All patients were in the intensive care unit, received mechanical ventilation, and had severe pulmonary involvement by COVID-19. Main Outcomes and Measures: Presence of presumed SARS-CoV-2 viral particles by immunofluorescence and transmission electron microscopy processing. Results: Three patients who died of COVID-19 were analyzed. Two patients were men, and 1 was a woman. The age at death ranged from 69 to 78 years. Presumed S and N COVID-19 proteins were seen by immunofluorescence microscopy within endothelial cells close to the capillary flame and cells of the inner and the outer nuclear layers. At the perinuclear region of these cells, it was possible to observe by transmission electron microscopy double-membrane vacuoles that are consistent with the virus, presumably containing COVID-19 viral particles. Conclusions and Relevance: The present observations show presumed SARS-CoV-2 viral particles in various layers of the human retina, suggesting that they may be involved in some of the infection's ocular clinical manifestations.


Subject(s)
COVID-19/virology , Retina/virology , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Aged , COVID-19/diagnosis , COVID-19/mortality , Female , Fluorescent Antibody Technique , Humans , Male , Microscopy, Electron, Transmission , Retina/ultrastructure , SARS-CoV-2/ultrastructure , Virion/ultrastructure
19.
J Infect Dis ; 224(1): 31-38, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294729

ABSTRACT

Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.


Subject(s)
Antibiosis , COVID-19/virology , Coinfection , Picornaviridae Infections/virology , Rhinovirus/physiology , SARS-CoV-2/physiology , Virus Replication , COVID-19/epidemiology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Humans , Respiratory Mucosa/virology
20.
STAR Protoc ; 2(3): 100499, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1275771

ABSTRACT

Location of immune cells that form the germinal center reaction within secondary lymphoid tissues can be characterized using confocal microscopy. Here, we present an optimized immunofluorescence staining protocol to image germinal center structures in fixed/frozen spleen sections from ChAdOx1 nCoV-19 immunized mice. This protocol can be adapted to identify other cell types within secondary lymphoid tissues. For complete information on the generation and use of this protocol to examine immune responses to the COVID vaccine ChAdOx1 nCoV-19, please refer to Silva-Cayetano et al. (2020).


Subject(s)
COVID-19/prevention & control , Fluorescent Antibody Technique/standards , Germinal Center/drug effects , Immunization, Secondary/methods , SARS-CoV-2/immunology , Spleen/drug effects , Animals , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/virology , Fluorescent Antibody Technique/methods , Germinal Center/immunology , Germinal Center/pathology , Germinal Center/virology , Immunogenicity, Vaccine , Male , Mice , Spleen/immunology , Spleen/pathology , Spleen/virology
SELECTION OF CITATIONS
SEARCH DETAIL