Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J AOAC Int ; 105(4): 1069-1091, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1931846

ABSTRACT

BACKGROUND: The Thermo Scientific™ SureTect™ Listeria monocytogenes PCR Assay uses Solaris reagents for performing PCR for the rapid and specific detection of Listeria monocytogenes in a broad range of foods and selected environmental surfaces. OBJECTIVE: To demonstrate reproducibility of the SureTect Listeria monocytogenes PCR Assay in a collaborative study using a challenging matrix, full-fat cottage cheese (25 g). To extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the United States Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 10 Listeria reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Eighteen participants from 10 laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection (POD) statistical model. In addition, to extend the scope, six matrix studies were performed comparing the candidate method to the FDA/BAM reference method. One of these matrixes was also compared to the ISO 11290-1:2017 Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.-Part 1: Detection Method Reference Method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. The two PCR instruments used in the study performed equivalently. All presumptive positives were confirmed via the alternative confirmation procedure. In the pre-collaborative studies, the results showed comparable performances between the candidate method and the reference method for all matrixes tested. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 25 g full-fat cottage cheese is known to be a challenging matrix to test. No unusual cross-contamination or false positive/negative data were reported, highlighting the ease of use, reproducibility, and robustness of the method.


Subject(s)
COVID-19 , Listeria monocytogenes , Listeria , Food Microbiology , Humans , Listeria/genetics , Listeria monocytogenes/genetics , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , United States
2.
J Food Prot ; 84(7): 1239-1251, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1810920

ABSTRACT

ABSTRACT: Cross-contamination of raw food to other surfaces, hands, and foods is a serious issue in food service. With individuals eating more meals away from home, contracting a foodborne illness from a food service establishment is an increasing concern. However, most studies have concentrated on hands or food contact surfaces and neglected atypical and unusual surfaces (surfaces that are not typically identified as a source of cross-contamination) and venues. This review was conducted to identify atypically cross-contaminated surfaces and atypical venues where cross-contamination could occur that have not been examined thoroughly in the literature. Most surfaces that could be at risk for cross-contamination are frequently touched, are rarely cleaned and sanitized, and can support the persistence and/or growth of foodborne pathogens. These surfaces include menus, spice and condiment containers, aprons and coveralls, mobile devices and tablets, and money. Venues that are explored, such as temporary events, mobile vendors, and markets, are usually limited in space or infrastructure, have low compliance with proper hand washing, and provide the opportunity for raw and ready-to-eat foods to come into contact with one another. These factors create an environment in which cross-contamination can occur and potentially impact food safety. A more comprehensive cleaning and sanitizing regime encompassing these surfaces and venues could help mitigate cross-contamination. This review highlights key surfaces and venues that have the potential to be cross-contaminated and have been underestimated or not fully investigated. These knowledge gaps indicate where further work is needed to fully understand the role of these surfaces and venues in cross-contamination and how it can be prevented.


Subject(s)
Food Services , Foodborne Diseases , Food Contamination/analysis , Food Handling , Food Microbiology , Food Safety , Hand , Hand Disinfection , Humans
3.
Int J Food Microbiol ; 366: 109572, 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1719840

ABSTRACT

Listeria monocytogenes remains a significant public health threat, leading to invasive listeriosis with severe manifestations (i.e. septicemia, meningitis, and abortion) and up to 30% of fatal cases. Here, we aimed to investigate genotypic diversity, virulence profiles, antimicrobial resistance patterns from a large and integrated population of L. monocytogenes isolates in China (n = 369), including food (n = 326), livestock (n = 25), and hospitalized humans (n = 18) over the years (2002-2019). PCR-based serogrouping showed the dominance of serogroup 1/2a-3a (37.4%) in food, 4a-4c (76%) in livestock, and 1/2a-3a (44.4%) in humans. Phylogenetic lineage analysis revealed the dominance of lineage II (63.4%) in food, lineage III (76%) in livestock, and lineage II (55.5%) in humans. Altogether, 369 isolates were grouped into 55 sequence types (STs) via multi-locus sequence typing (MLST), which belonged to 26 clonal complexes (CCs) and 17 singletons. Among various STs, ST9 (26%) was the most abundant in food, ST202 (76%) in livestock, and ST8 (16.6%) in humans. Overall, ST4/CC4, ST218/CC218, and ST619 isolates harbored both LIPI-3 and LIPI-4 genes subsets indicating their hypervirulence potential. Additionally, a low resistance was observed towards tetracycline (5.1%), erythromycin (3.2%), cotrimoxazole (2.9%), chloramphenicol (2.7%), gentamicin (2.4%), and ampicillin (2.1%). Collectively, detection of hypervirulent determinants and antimicrobial-resistant phenotype among Chinese isolates poses an alarming threat to food safety and public health, which requires a continued and enhanced surveillance system for further prevention of human listeriosis.


Subject(s)
Drug Resistance, Bacterial , Listeria monocytogenes , Animals , Anti-Bacterial Agents/pharmacology , China/epidemiology , Food Microbiology , Genetic Variation , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/veterinary , Livestock/microbiology , Multilocus Sequence Typing , Phylogeny , Virulence Factors/genetics
4.
Toxins (Basel) ; 14(1)2022 01 05.
Article in English | MEDLINE | ID: covidwho-1626257

ABSTRACT

Foodborne diseases (FBDs) represent a worldwide public health issue, given their spreadability and the difficulty of tracing the sources of contamination. This report summarises the incidence of foodborne pathogens and toxins found in food, environmental and clinical samples collected in relation to diagnosed or suspected FBD cases and submitted between 2018 and 2020 to the Food Microbiology Unit of the Istituto Zooprofilattico Sperimentale del Lazio e della Toscana (IZSLT). Data collected from 70 FBD investigations were analysed: 24.3% of them started with an FBD diagnosis, whereas a further 41.4% involved clinical diagnoses based on general symptomatology. In total, 5.6% of the 340 food samples analysed were positive for the presence of a bacterial pathogen, its toxins or both. Among the positive samples, more than half involved meat-derived products. Our data reveal the probable impact of the COVID-19 pandemic on the number of FBD investigations conducted. In spite of the serious impact of FBDs on human health and the economy, the investigation of many foodborne outbreaks fails to identify the source of infection. This indicates a need for the competent authorities to continue to develop and implement a more fully integrated health network.


Subject(s)
Bacterial Toxins/chemistry , COVID-19/epidemiology , Food Analysis , Food Microbiology , Food Safety , SARS-CoV-2 , Foodborne Diseases , Humans , Incidence , Italy/epidemiology , Public Health , Retrospective Studies
5.
Sci Rep ; 11(1): 22902, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1541249

ABSTRACT

Surveillance of notified Campylobacter enteritis in Germany revealed a recurrent annual increase of cases with disease onset several days after the Christmas and New Year holidays ("winter peak"). We suspected that handling and consumption of chicken meat during fondue and raclette grill meals on the holidays were associated with winter peak Campylobacter infections. The hypothesis was investigated in a case-control study with a case-case design where notified Campylobacter enteritis cases served as case-patients as well as control-patients, depending on their date of disease onset (case-patients: 25/12/2018 to 08/01/2019; control-patients: any other date between 30/11/2018 and 28/02/2019). The study was conducted as an online survey from 21/01/2019 to 18/03/2019. Adjusted odds ratios (aOR) were determined in single-variable logistic regression analyses adjusted for age group and sex. We analysed 182 data sets from case-patients and 260 from control-patients and found associations of Campylobacter infections after the holidays with meat fondue (aOR 2.2; 95% confidence interval (CI) 1.2-3.8) and raclette grill meals with meat (aOR 1.5; 95% CI 1.0-2.4) consumed on the holidays. The associations were stronger when chicken meat was served at these meals (fondue with chicken meat: aOR 2.7; 95% CI 1.4-5.5; raclette grill meal with chicken meat: aOR 2.3; 95% CI 1.3-4.1). The results confirmed our initial hypothesis. To prevent Campylobacter winter peak cases in the future, consumers should be made more aware of the risks of a Campylobacter infection when handling raw meat, in particular chicken, during fondue or raclette grill meals on the holidays.


Subject(s)
Campylobacter Infections/epidemiology , Enteritis/epidemiology , Food Microbiology , Foodborne Diseases/epidemiology , Meat/microbiology , Seasons , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Campylobacter Infections/diagnosis , Campylobacter Infections/microbiology , Case-Control Studies , Child , Child, Preschool , Cooking , Enteritis/diagnosis , Enteritis/microbiology , Female , Foodborne Diseases/diagnosis , Foodborne Diseases/microbiology , Germany/epidemiology , Holidays , Humans , Infant , Infant, Newborn , Male , Middle Aged , Poultry/microbiology , Risk Assessment , Risk Factors , Time Factors , Young Adult
6.
Elife ; 102021 01 26.
Article in English | MEDLINE | ID: covidwho-1513022

ABSTRACT

Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.


Sourdough bread is an ancient fermented food that has sustained humans around the world for thousands of years. It is made from a sourdough 'starter culture' which is maintained, portioned, and shared among bread bakers around the world. The starter culture contains a community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour and produce the carbon dioxide gas that makes the bread dough rise before baking. The different acids and enzymes produced by the microbial culture affect the bread's flavor, texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the mixture of microbes they contain have scarcely been characterized. Previous studies have looked at the composition of starter cultures from regions within Europe. But there has never been a comprehensive study of how the microbial diversity of sourdough starters varies across and between continents. To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial communities of sourdough starters from the homes of 500 bread bakers in North America, Europe and Australasia. Bread makers often think their bread's unique qualities are due to the local environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that geographical location did not correlate with the diversity of the starter cultures studied. The data revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past research, were relatively common in starter cultures. Moreover, starters with a greater abundance of this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a slower rate. This research demonstrates which species of bacteria and yeast are most commonly found in sourdough starters, and suggests geographical location has little influence on the microbial diversity of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture was made and how it is maintained over time.


Subject(s)
Bacteria/metabolism , Bread/microbiology , Food Microbiology , Microbiota , Acetic Acid/metabolism
7.
Int J Environ Res Public Health ; 18(20)2021 10 09.
Article in English | MEDLINE | ID: covidwho-1480712

ABSTRACT

This study aims to give an overview of the prevalence of Listeria monocytogenes and Salmonella spp. in 9727 samples (2996 for L. monocytogenes and 6731 for Salmonella spp.) from different categories of ready-to-eat (RTE) foods, collected over 2 years from 28 large retailers and 148 canteens in the regions of northern Italy. The RTE samples were classified into two groups according to the preparation methods: (i) multi-ingredient preparations consisting of fully cooked food ready for immediate consumption, or with minimal further handling before consumption (Group A), and (ii) multi-ingredient preparations consisting of cooked and uncooked food, or preparations consisting of only raw ingredients (Group B). L. monocytogenes and Salmonella spp. were investigated in both of these categories. The overall prevalence of L. monocytogenes and Salmonella spp. was 0.13% and 0.07%, respectively. More specifically, L. monocytogenes was found in 0.04% of 2442 analysed RTE food samples belonging to group A and in 0.54% of 554 samples belonging to group B. Furthermore, 0.03% of 5367 RTE food samples from group A and 0.21% of 1364 samples from group B tested positive for Salmonella spp. In conclusion, the results obtained in this study can provide a significant contribution to L. monocytogenes and Salmonella spp. risk analysis in RTE foods.


Subject(s)
Listeria monocytogenes , Colony Count, Microbial , Food Contamination/analysis , Food Microbiology , Prevalence , Salmonella
8.
MMWR Morb Mortal Wkly Rep ; 70(38): 1332-1336, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1468850

ABSTRACT

Foodborne illnesses are a substantial and largely preventable public health problem; before 2020 the incidence of most infections transmitted commonly through food had not declined for many years. To evaluate progress toward prevention of foodborne illnesses in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors the incidence of laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food reported by 10 U.S. sites.* FoodNet is a collaboration among CDC, 10 state health departments, the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), and the Food and Drug Administration. This report summarizes preliminary 2020 data and describes changes in incidence with those during 2017-2019. During 2020, observed incidences of infections caused by enteric pathogens decreased 26% compared with 2017-2019; infections associated with international travel decreased markedly. The extent to which these reductions reflect actual decreases in illness or decreases in case detection is unknown. On March 13, 2020, the United States declared a national emergency in response to the COVID-19 pandemic. After the declaration, state and local officials implemented stay-at-home orders, restaurant closures, school and child care center closures, and other public health interventions to slow the spread of SARS-CoV-2, the virus that causes COVID-19 (1). Federal travel restrictions were declared (1). These widespread interventions as well as other changes to daily life and hygiene behaviors, including increased handwashing, have likely changed exposures to foodborne pathogens. Other factors, such as changes in health care delivery, health care-seeking behaviors, and laboratory testing practices, might have decreased the detection of enteric infections. As the pandemic continues, surveillance of illness combined with data from other sources might help to elucidate the factors that led to the large changes in 2020; this understanding could lead to improved strategies to prevent illness. To reduce the incidence of these infections concerted efforts are needed, from farm to processing plant to restaurants and homes. Consumers can reduce their risk of foodborne illness by following safe food-handling and preparation recommendations.


Subject(s)
COVID-19/epidemiology , Food Microbiology/statistics & numerical data , Food Parasitology/statistics & numerical data , Foodborne Diseases/epidemiology , Pandemics , Watchful Waiting , Adolescent , Child , Child, Preschool , Foodborne Diseases/microbiology , Foodborne Diseases/parasitology , Humans , Incidence , Infant , United States/epidemiology
9.
J AOAC Int ; 105(1): 167-190, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1443052

ABSTRACT

BACKGROUND: The Thermo Scientific™ SureTect™ Salmonella species PCR Assay utilizes Solaris™ reagents for performing PCR for the rapid and specific detection of Salmonella species in a broad range of foods and select environmental surfaces. OBJECTIVE: The aims were to demonstrate the reproducibility of the Thermo Scientific SureTect Salmonella species PCR Assay in a collaborative study using a challenging matrix, cocoa powder, and to extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the US Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Fourteen participants from nine laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection statistical model. In addition, 11 matrix studies were performed comparing the candidate method to the FDA/BAM Chapter 5 or US Department of Agriculture, Food Safety and Inspection Service, Microbiology Laboratory Guidebook 4.10 Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Siluriformes (Fish) Products and Carcass and Environmental Sponges reference method. Nine of these matrices were also compared to the EN ISO 6579-1:2017/Amd.1:2020(E) Microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella-Part 1: Detection of Salmonella spp.-AMENDMENT 1: Broader range of incubation temperatures, amendment to the status of Annex D, and correction of the composition of MSRV and SC reference method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable interlaboratory reproducibility as determined in the collaborative evaluation. False-positive and false-negative rates were determined for the matrix and produced values of <2%. The two PCR thermocyclers (QS5, 7500 Fast) performed equivalently. There were no result differences between candidate method confirmations and reference method confirmations. In the pre-collaborative matrix extension, the results from the matrix studies showed a comparable performance between the candidate method and the tested reference methods. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable interlaboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 375 g cocoa powder is known to be a challenging matrix for PCR methods. No unusual cross-contamination or false-positive/negative was reported, highlighting the ease of use, reproducibility, and robustness of the method.


Subject(s)
COVID-19 , Food Microbiology , Animals , Humans , Meat/analysis , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2 , Salmonella/genetics , United States
10.
Compr Rev Food Sci Food Saf ; 20(5): 4212, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416244
11.
Viruses ; 13(7)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1314758

ABSTRACT

Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material.


Subject(s)
COVID-19/transmission , Coronavirus Infections/transmission , Food Microbiology , SARS-CoV-2/physiology , COVID-19/virology , Cell Line , Common Cold/transmission , Coronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Equipment Contamination , Feces/virology , Fomites , Foodborne Diseases/virology , Humans , Norovirus/isolation & purification , Stainless Steel
13.
Food Microbiol ; 98: 103794, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1157297

ABSTRACT

The emergence of Coronavirus disease 2019 as a global pandemic has increased popular concerns about diseases caused by viruses. Fermented foods containing high loads of viable fungi and bacteria are potential sources for virus contamination. The most common include viruses that infect bacteria (bacteriophage) and yeasts reported in fermented milks, sausages, vegetables, wine, sourdough, and cocoa beans. Recent molecular studies have also associated fermented foods as vehicles for pathogenic human viruses. Human noroviruses, rotavirus, and hepatitis virus have been identified in different fermented foods through multiple routes. No severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) virus or close members were found in fermented foods to date. However, the occurrence/persistence of other pathogenic viruses reveals a potential vulnerability of fermented foods to SARS-CoV-2 contamination. On the other side of the coin, some bacteriophages are being suggested for improving the fermentation process and food safety, as well as owing potential probiotic properties in modern fermented foods. This review will address the diversity and characteristics of viruses associated with fermented foods and what has been changed after a short introduction to the most common next-generation sequencing platforms. Also, the risk of SARS-CoV-2 transmission via fermented foods and preventive measures will be discussed.


Subject(s)
/virology , Food Contamination , Food Microbiology , Bacteriophages , Fungal Viruses , SARS-CoV-2 , Virome
15.
Biosens Bioelectron ; 178: 113001, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1064880

ABSTRACT

Amplification-based nucleic acid detection is widely employed in food safety, medical diagnosis and environment monitoring. However, conventional nucleic acid analysis has to be carried out in laboratories because of requiring expensive instruments and trained personnel. If people could do nucleic acid detection at home by themselves, the application of nucleic acid detection would be greatly accelerated. We herein reported a polypropylene (PP) bag-based method for convenient detection of nucleic acids in the oil-sealed space. The PP bag has three chambers which are responsible for lysis, washing and amplification/detection, respectively. After adding sample, nucleic acids are adsorbed on magnetic particles (MPs) and moved into these three chambers successively through immiscible oil channel by an external magnet. Combined with isothermal amplification, the PP bag can be incubated in a water bath or milk warmer and acted as a reaction tube. With highly specific CRISPR technology, Salmonella typhimurium (St) and SARS-CoV-2 can be visually detected in these PP bags within 1 h, indicating its potential household application. To further improve the reliability of nucleic acid testing at home, a logic decision method is introduced by detecting both target and endogenous reference gene. Positive/negative/invalid detection result can be obtained by chronologically adding the CRISPR reagents of target and endogenous reference gene. We anticipate that this PP bag can provide a novel toolkit for nucleic acid detection in people's daily life.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/virology , CRISPR-Cas Systems , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/instrumentation , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Food Microbiology , Humans , Magnetics , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Polypropylenes , RNA, Viral/genetics , RNA, Viral/isolation & purification , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Self-Testing
17.
Public Health Nutr ; 23(17): 3250-3255, 2020 12.
Article in English | MEDLINE | ID: covidwho-949637

ABSTRACT

OBJECTIVE: The current pandemic restarts a debate on permanently banning wildlife consumption in an effort to prevent further public health threats. In this commentary, we offer two ideas to enhance the discussion on foodborne zoonotic diseases in food systems. DESIGN: First, we focus on the probable consequences that the loss of access to wildlife could cause to the status of food and nutrition security of many people in developing countries that rely on bushmeat to subsist. Second, we argue that all animal-based food systems, especially the ones based on intensive husbandry, present food safety threats. CONCLUSION: To ban the access to bushmeat without a rational analysis of all human meat production and consumption in the global animal-based food system will not help us to prevent future outbreaks.


Subject(s)
Animals, Wild/virology , COVID-19/virology , Food Safety , Meat/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/transmission , Developing Countries , Diet , Food Insecurity , Food Microbiology , Food Supply , Humans , Pandemics , Public Health , Viral Zoonoses/virology
18.
Anal Chem ; 92(19): 13396-13404, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-933642

ABSTRACT

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium Staphylococcus aureus (S. aureus) as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving S. aureus stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of S. aureus, the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to S. aureus, which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of S. aureus with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of S. aureus in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.


Subject(s)
Bacteria/chemistry , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Biosensing Techniques/methods , Fluorescent Dyes/chemical synthesis , Nanotechnology/methods , Anti-Bacterial Agents/pharmacology , Aptamers, Nucleotide , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/microbiology , Fluorescence , Fluorescence Resonance Energy Transfer , Food Microbiology/methods , Humans , Nanoparticles , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/microbiology , Sensitivity and Specificity , Spectroscopy, Near-Infrared , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL