Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1358459

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Neutrophil Activation/immunology , Adult , Aged , Antibodies, Viral/blood , Antigen-Antibody Complex/blood , Antigens, CD/immunology , CD11b Antigen/immunology , Cell Adhesion Molecules/immunology , Female , GPI-Linked Proteins/immunology , Humans , Immunoglobulin G/blood , Interleukin-8/immunology , Male , Middle Aged , Neutrophils/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Young Adult
2.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1179919

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
3.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1169670

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Neutrophil Activation/immunology , Adult , Aged , Antibodies, Viral/blood , Antigen-Antibody Complex/blood , Antigens, CD/immunology , CD11b Antigen/immunology , Cell Adhesion Molecules/immunology , Female , GPI-Linked Proteins/immunology , Humans , Immunoglobulin G/blood , Interleukin-8/immunology , Male , Middle Aged , Neutrophils/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Young Adult
4.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Article in English | MEDLINE | ID: covidwho-710376

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon Type I/metabolism , Pneumonia, Viral/immunology , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis
5.
Nat Microbiol ; 5(11): 1330-1339, 2020 11.
Article in English | MEDLINE | ID: covidwho-676586

ABSTRACT

Zoonotic coronaviruses (CoVs) are substantial threats to global health, as exemplified by the emergence of two severe acute respiratory syndrome CoVs (SARS-CoV and SARS-CoV-2) and Middle East respiratory syndrome CoV (MERS-CoV) within two decades1-3. Host immune responses to CoVs are complex and regulated in part through antiviral interferons. However, interferon-stimulated gene products that inhibit CoVs are not well characterized4. Here, we show that lymphocyte antigen 6 complex, locus E (LY6E) potently restricts infection by multiple CoVs, including SARS-CoV, SARS-CoV-2 and MERS-CoV. Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in immune cells were highly susceptible to a murine CoV-mouse hepatitis virus. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic immune cells, higher splenic viral burden and reduction in global antiviral gene pathways. Accordingly, we found that constitutive Ly6e directly protects primary B cells from murine CoV infection. Our results show that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo-knowledge that could help inform strategies to combat infection by emerging CoVs.


Subject(s)
Antigens, Surface/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus/physiology , GPI-Linked Proteins/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Surface/genetics , Antigens, Surface/immunology , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus/immunology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS Virus/immunology , SARS Virus/physiology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL