Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur J Med Chem ; 241: 114659, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2035972

ABSTRACT

Cytokine storm is a key feature of sepsis and severe stage of COVID-19, and the immunosuppression after excessive immune activation is a substantial hazard to human life. Both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by various pattern recognition receptors (PRRs), which lead to the immune response. A number of neolignan analogues were synthesized in this work and showed powerful anti-inflammation properties linked to the response to innate and adaptive immunity, as well as NP-7 showed considerable anti-inflammatory activity at 100 nM. On the sepsis model caused by cecum ligation and puncture (CLP) in C57BL/6J mice, NP-7 displayed a strong regulatory influence on cytokine release. Then a photo-affinity probe of NP-7 was synthesized and chemoproteomics based on stable isotope labeling with amino acids in cell cultures (SILAC) identified Immunity-related GTPase M (IRGM) as a target suppressing cytokine storm, which was verified by competitive pull-down, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular dynamics simulations.


Subject(s)
Anti-Inflammatory Agents , Cytokine Release Syndrome , GTP-Binding Proteins , Sepsis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Disease Models, Animal , GTP-Binding Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Proteomics
2.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1957234

ABSTRACT

ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease. Celiac disease is an autoimmune-mediated chronic inflammatory condition of the small intestine affecting about 1-2% of people in Caucasian populations. The autoimmune disease is triggered by dietary gluten. Consumption of staple foods containing wheat, barley, or rye leads to destruction of the small intestinal mucosa in genetically susceptible individuals, and this is accompanied by the generation of characteristic TG2 autoantibodies. TG2 plays a causative role in the pathogenesis of celiac disease. Upon activation by Ca2+, it catalyzes the deamidation of gliadin peptides as well as the crosslinking of gliadin peptides to TG2 itself. These modified biological structures trigger breaking of oral tolerance to gluten, self-tolerance to TG2, and the activation of cytotoxic immune cells in the gut mucosa. Recently, in an exploratory proof-of-concept study, ZED1227 administration clinically validated TG2 as a "druggable" target in celiac disease. Here, we describe the specific features and profiling data of the drug candidate ZED1227. Further, we give an outlook on TG2 inhibition as a therapeutic approach in indications beyond celiac disease.


Subject(s)
Celiac Disease , Celiac Disease/drug therapy , GTP-Binding Proteins/metabolism , Gliadin/chemistry , Glutens/chemistry , Humans , Imidazoles , Peptides/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines , Transglutaminases/metabolism
3.
Arch Virol ; 166(11): 3117-3126, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1404655

ABSTRACT

Evidence supports a role of host genetic diversity in the clinical course of coronavirus disease 2019 (COVID-19). Variation in the cannabinoid CB2 receptor gene (CNR2) could affect the regulatory action of endocannabinoids on the immune system, resulting in an increased risk of various inflammatory diseases. The present study investigated the relationship between the CNR2-Q63R variant and COVID-19 severity. A total of 200 Iranian COVID-19 patients were enrolled in the study and genotyped using a TaqMan assay. The co-dominant, dominant, recessive, over-dominant, and additive inheritance models were analyzed using SNPStats software. In silico molecular docking was also performed to simulate the effects of the Q63R variation on CB2 binding with a ligand and with the G-protein. A significant difference in the Q63R allele and genotype distribution was found between expired and discharged COVID-19 patients in co-dominant, recessive, and additive inheritance models. The molecular docking results showed that the predicted structure of mutant CB2 (63R type) could not bind to the G-protein in the correct position. The data indicated that the Q63R variation in the CNR2 gene may affect the severity of COVID-19. Identification of genes related to susceptibility and severity of COVID-19 may lead to specific targets for drug repurposing or development.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Receptor, Cannabinoid, CB2/genetics , COVID-19/diagnosis , Case-Control Studies , Female , GTP-Binding Proteins/metabolism , Gene Frequency , Genotype , Humans , Iran , Male , Middle Aged , Models, Molecular , Molecular Docking Simulation , Polymorphism, Genetic , Protein Binding , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/metabolism , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL