Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
AJR Am J Roentgenol ; 218(4): 651-657, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817848

ABSTRACT

BACKGROUND. A possible association has been reported between COVID-19 messenger RNA (mRNA) vaccination and myocarditis. OBJECTIVE. The purpose of our study was to describe cardiac MRI findings in patients with myocarditis after COVID-19 mRNA vaccination. METHODS. This retrospective study included patients without known prior SARS-CoV-2 infection who underwent cardiac MRI between May 14, 2021, and June 14, 2021, for suspected myocarditis within 2 weeks of COVID-19 mRNA vaccination. Information regarding clinical presentation, hospital course, and events after hospital discharge were recorded. A cardiothoracic imaging fellow and cardiothoracic radiologist reviewed cardiac MRI examinations in consensus. Data were summarized descriptively. RESULTS. Of 52 patients without known prior SARS-CoV-2 infection who underwent cardiac MRI during the study period, five underwent MRI for suspected myocarditis after recent COVID-19 mRNA vaccination. All five patients were male patients ranging in age from 16 to 19 years (mean, 17.2 ± 1.0 [SD] years) who presented within 4 days of receiving the second dose of a COVID-19 mRNA vaccine. Troponin levels were elevated in all patients (mean peak troponin I value, 6.82 ± 4.13 ng/mL). Alternate possible causes of myocarditis were deemed clinically unlikely on the basis of medical history, physical examination findings, myocarditis viral panel, and toxicology screening. Cardiac MRI findings were consistent with myocarditis in all five patients on the basis of the Lake Louise criteria, including early gadolinium enhancement and late gadolinium enhancement (LGE) in all patients and corresponding myocardial edema in four patients. All five patients had a favorable hospital course and were discharged from the hospital in stable condition with improved or resolved symptoms after hospitalization (mean length of hospital stay, 4.8 days). Two patients underwent repeat cardiac MRI that showed persistent, although decreased, LGE. Three patients reported mild intermittent self-resolving chest pain after hospital discharge, and two patients had no recurrent symptoms after discharge. CONCLUSION. In this small case series, all patients with myocarditis after COVID-19 vaccination were male adolescents and had a favorable initial clinical course. All patients showed cardiac MRI findings typical of myocarditis from other causes. LGE persisted in two patients who underwent repeat MRI. These observations do not establish causality. CLINICAL IMPACT. Radiologists should be aware of a possible association of COVID-19 mRNA vaccination and myocarditis and recognize the role of cardiac MRI in the assessment of suspected myocarditis after COVID-19 vaccination.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Male , Myocarditis/diagnostic imaging , Myocarditis/etiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effects , Vaccines, Synthetic , Young Adult
2.
Int J Environ Res Public Health ; 19(8)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1809877

ABSTRACT

Cardiac magnetic resonance (CMR) is a second-line imaging test in cardiology. Balanced enlargement of heart chambers called athlete's heart (AH) is a part of physiological adaptation to regular physical activity. The aim of this study was to evaluate the diagnostic utility of CMR in athletes with suspected structural heart disease (SHD) and to analyse the relation between the coexistence of AH and SHD. We wanted to assess whether the presence of AH phenotype could be considered as a sign of a healthy heart less prone to development of SHD. This retrospective, single centre study included 154 consecutive athletes (57 non-amateur, all sports categories, 87% male, mean age 34 ± 12 years) referred for CMR because of suspected SHD. The suspicion was based on existing guidelines including electrocardiographic and/or echocardiographic changes suggestive of abnormality but without a formal diagnosis. CMR permitted establishment of a new diagnosis in 66 patients (42%). The main diagnoses included myocardial fibrosis typical for prior myocarditis (n = 21), hypertrophic cardiomyopathy (n = 17, including 6 apical forms), other cardiomyopathies (n = 10) and prior myocardial infarction (n = 6). Athlete's heart was diagnosed in 59 athletes (38%). The presence of pathologic late gadolinium enhancement (LGE) was found in 41 patients (27%) and was not higher in athletes without AH (32% vs. 19%, p = 0.08). Junction-point LGE was more prevalent in patients with AH phenotype (22% vs. 9%, p = 0.02). Patients without AH were not more likely to be diagnosed with SHD than those with AH (49% vs. 32%, p = 0.05). Based on the results of CMR and other tests, three patients (2%) were referred for ICD implantation for the primary prevention of sudden cardiac death with one patient experiencing adequate intervention during follow-up. The inclusion of CMR into the diagnostic process leads to a new diagnosis in many athletes with suspicion of SHD and equivocal routine tests. Athletes with AH pattern are equally likely to be diagnosed with SHD in comparison to those without AH phenotype. This shows that the development of AH and SHD can occur in parallel, which makes differential diagnosis in this group of patients more challenging.


Subject(s)
Cardiomegaly, Exercise-Induced , Cardiomyopathies , Heart Diseases , Athletes , Cardiomyopathies/diagnostic imaging , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Spectroscopy , Male , Predictive Value of Tests , Retrospective Studies
3.
Biomed Chromatogr ; 36(6): e5365, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1739127

ABSTRACT

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 µl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105  ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.


Subject(s)
COVID-19 , Ionic Liquids , Liquid Phase Microextraction , Amides , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Furans , Gadolinium , Humans , Liquid Phase Microextraction/methods , Magnetic Phenomena , Pyrazines
4.
Clin Nucl Med ; 47(5): e421-e422, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1722749

ABSTRACT

ABSTRACT: A 22-year-old man visited the emergency department with chest pain. He had received a second dose of the coronavirus disease 2019 (COVID-19) mRNA (Moderna) vaccine 5 days prior. 18F-FDG PET/MR revealed a focal FDG uptake and late gadolinium enhancement on the basal posterolateral wall of the left ventricle. Myocarditis after a COVID-19 vaccination has been reported predominantly after the second dose of mRNA vaccines in young men. This was a case of acute focal myocarditis after a COVID-19 mRNA vaccination, which was well-visualized by FDG PET/MRI.


Subject(s)
COVID-19 , Myocarditis , Adult , COVID-19 Vaccines/adverse effects , Contrast Media , Fluorodeoxyglucose F18 , Gadolinium , Humans , Magnetic Resonance Imaging , Male , Myocarditis/diagnostic imaging , Myocarditis/etiology , RNA, Messenger , Vaccination , Young Adult
5.
Vaccine ; 40(12): 1768-1774, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1671286

ABSTRACT

BACKGROUND: Post-marketing surveillance studies have raised concerns of increased myocarditis rates following coronavirus disease-19 (Covid-19) mRNA vaccines. The present study aims to accumulate the published mRNA Covid-19 vaccine-associated myocarditis cases, describe their clinical characteristics and determine the factors predisposing to critical illness. METHODS: Medline, Scopus, Web of Science, CENTRAL and Google Scholar were systematically searched from inception. Studies reporting adult myocarditis cases following BNT162b2 or mRNA-1273 vaccination were included. Individual participant data coming from case reports/series were pooled. Proportional random-effects meta-analysis was conducted by combining the pooled cohort and observational studies with aggregated data. RESULTS: Overall, 39 studies were included with a total of 129 patients. Most cases occurred in young males after the second vaccine dose. Myocarditis after the first dose was significantly associated with prior Covid-19 (p-value: 0.025). The most common electrocardiographic finding was ST-segment elevation, while late gadolinium enhancement was invariably observed in cardiac magnetic reasoning. Logistic regression analysis demonstrated that signs of heart failure were predictive of subsequent critical illness (Odds ratio: 19.22, 95% confidence intervals-CI: 5.57-275.84). Proportion meta-analysis indicated that complete resolution of symptoms is achieved in 80.5% of patients (95% CI: 59.3-92.1), while the proportion of participants necessitating intensive care unit admission is 7.0% (95% CI: 3.8-12.9). CONCLUSIONS: Myocarditis following mRNA Covid-19 vaccination is typically mild, following an uncomplicated clinical course with rapid improvement of symptoms. Future research is needed to define its exact incidence, clarify its pathophysiology and determine the optimal management plan depending on its severity. Protocol registration: dx.https://doi.org/10.17504/protocols.io.bxwtppen.


Subject(s)
COVID-19 , Myocarditis , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Contrast Media , Gadolinium , Humans , Male , Myocarditis/diagnosis , RNA, Messenger , SARS-CoV-2 , Vaccination/adverse effects
6.
Am J Cardiol ; 168: 135-141, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1634616

ABSTRACT

Multisystem inflammatory syndrome (MIS) is a severe complication described in a minority of patients with COVID-19. Myocarditis has been reported in patients with COVID-19, including MIS. In this study, we compared the clinical characteristics and cardiac magnetic resonance (CMR) findings of COVID-19 myocarditis in patients with and without MIS. In the 330 patients with COVID-19 who were referred for CMR at our institution between July 24, 2020, to March 31, 2021, 40 patients were identified as having myocarditis, MIS myocarditis (n = 21) and non-MIS myocarditis (n = 19). MIS myocarditis was characterized by global myocardial inflammation/edema with significantly elevated native T1, whereas only regional inflammation, and edema were noted in the non-MIS group. Distinct late gadolinium enhancement (LGE) patterns-inferior myocardial involvement in non-MIS myocarditis and septal involvement in MIS myocarditis-were identified. The LGE burden was comparable between the 2 groups (5.9% vs 6.6%, MIS vs non-MIS group, p = 0.83). Myocarditis was diagnosed more frequently by CMR in the MIS group (70% vs 6.3%, MIS vs non-MIS, p <0.001). In the 20 patients with a sequential CMR study at a median 102-day follow-up, 25% had persistent myocardial edema. The LGE burden improved over time, from a median of 5.0% (interquartile range 3.4% to 7.3%) to 3.2% (interquartile range 2.0% to 3.8%; p <0.001). In conclusion, MIS and non-MIS myocarditis exhibit distinct characteristics by CMR. Persistent LGE and edema were common at follow-up CMR examination in both groups.


Subject(s)
COVID-19 , Myocarditis , COVID-19/complications , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Myocarditis/diagnostic imaging , Myocarditis/pathology , Myocardium/pathology , Predictive Value of Tests
7.
JAMA Cardiol ; 7(3): 298-308, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1620071

ABSTRACT

IMPORTANCE: Although myocardial injury can occur with acute COVID-19, there is limited understanding of changes with myocardial metabolism in recovered patients. OBJECTIVE: To examine myocardial metabolic changes early after recovery from COVID-19 using fluorodeoxyglucose-positron emission tomography (PET) and associate these changes to abnormalities in cardiac magnetic resonance imaging (MRI)-based function and tissue characterization measures and inflammatory blood markers. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study took place at a single-center tertiary referral hospital system. A volunteer sample of adult patients within 3 months of a diagnosis of COVID-19 who responded to a mail invitation were recruited for cardiac PET/MRI and blood biomarker evaluation between November 2020 and June 2021. EXPOSURES: Myocardial inflammation as determined by focal fluorodeoxyglucose (FDG) uptake on PET. MAIN OUTCOMES AND MEASURES: Demographic characteristics, cardiac and inflammatory blood markers, and fasting combined cardiac 18F-FDG PET/MRI imaging were obtained. All patients with focal FDG uptake at baseline returned for repeated PET/MRI and blood marker assessment 2 months later. RESULTS: Of 47 included patients, 24 (51%) were female, and the mean (SD) age was 43 (13) years. The mean (SD) interval between COVID-19 diagnosis and PET/MRI was 67 (16) days. Most patients recovered at home during the acute infection (40 [85%]). Eight patients (17%) had focal FDG uptake on PET consistent with myocardial inflammation. Compared with those without FDG uptake, patients with focal FDG uptake had higher regional T2, T1, and extracellular volume (colocalizing with focal FDG uptake), higher prevalence of late gadolinium enhancement (6 of 8 [75%] vs 9 of 39 [23%], P = .009), lower left ventricular ejection fraction (mean [SD], 55% [4%] vs 62% [5%], P < .001), worse global longitudinal and circumferential strain (mean [SD], -16% [2%] vs -17% [2%], P = .02 and -18% [2%] vs -20% [2%], P = .047, respectively), and higher systemic inflammatory blood markers including interleukin 6, interleukin 8, and high-sensitivity C-reactive protein. Among patients with focal FDG uptake, PET/MRI, and inflammatory blood markers resolved or improved at follow-up performed a mean (SD) of 52 (17) days after baseline PET/MRI. CONCLUSIONS AND RELEVANCE: In this study of patients recently recovered from COVID-19, myocardial inflammation was identified on PET in a small proportion of patients, was associated with cardiac MRI abnormalities and elevated inflammatory blood markers at baseline, and improved at follow-up.


Subject(s)
COVID-19 , Contrast Media , Adult , COVID-19/diagnostic imaging , COVID-19 Testing , Female , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography , Prospective Studies , Radiopharmaceuticals , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
8.
Medicine (Baltimore) ; 100(51): e28423, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1594101

ABSTRACT

RATIONALE: Transverse myelitis is an infectious or noninfectious inflammatory spinal cord syndrome. We report a rare case of transverse myelitis following vaccination against COVID-19. PATIENT CONCERNS: A 70-year-old male presented with progressive sensorimotor dysfunction of the bilateral lower limbs 7 days after receiving the mRNA-1273 vaccine against COVID-19. Spinal magnetic resonance imaging revealed intramedullary lesions with gadolinium enhancement on the Th1/2 and Th5/6 vertebral levels. Cerebrospinal fluid (CSF) testing showed a mildly increased level of total protein and positive oligoclonal bands (OCB). DIAGNOSIS: The patient was diagnosed with acute transverse myelitis. INTERVENTION: The patient received 5 days of intravenous methylprednisolone pulse (1000 mg/day) followed by oral prednisolone (30 mg/day with gradual tapering). OUTCOMES: The patient fully recovered from muscle weakness of the lower limbs. He was discharged from our hospital and able to independently walk without unsteadiness. LESSON: This is a rare case of transverse myelitis following COVID-19 vaccination. Positive OCB in CSF in the present case highlights the possibility of autoimmune processes, including polyclonal activation of B lymphocytes, following vaccination.


Subject(s)
/adverse effects , COVID-19 , Myelitis, Transverse , Vaccination , Aged , COVID-19/prevention & control , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging , Male , Methylprednisolone , Myelitis, Transverse/chemically induced , Vaccination/adverse effects
9.
J Cardiovasc Magn Reson ; 23(1): 140, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1590893

ABSTRACT

BACKGROUND: Recent evidence shows an association between coronavirus disease 2019 (COVID-19) infection and a severe inflammatory syndrome in children. Cardiovascular magnetic resonance (CMR) data about myocardial injury in children are limited to small cohorts. The aim of this multicenter, international registry is to describe clinical and cardiac characteristics of multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 using CMR so as to better understand the real extent of myocardial damage in this vulnerable cohort. METHODS AND RESULTS: Hundred-eleven patients meeting the World Health Organization criteria for MIS-C associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), having clinical cardiac involvement and having received CMR imaging scan were included from 17 centers. Median age at disease onset was 10.0 years (IQR 7.0-13.8). The majority of children had COVID-19 serology positive (98%) with 27% of children still having both, positive serology and polymerase chain reaction (PCR). CMR was performed at a median of 28 days (19-47) after onset of symptoms. Twenty out of 111 (18%) patients had CMR criteria for acute myocarditis (as defined by the Lake Louise Criteria) with 18/20 showing subepicardial late gadolinium enhancement (LGE). CMR myocarditis was significantly associated with New York Heart Association class IV (p = 0.005, OR 6.56 (95%-CI 1.87-23.00)) and the need for mechanical support (p = 0.039, OR 4.98 (95%-CI 1.18-21.02)). At discharge, 11/111 (10%) patients still had left ventricular systolic dysfunction. CONCLUSION: No CMR evidence of myocardial damage was found in most of our MIS-C cohort. Nevertheless, acute myocarditis is a possible manifestation of MIS-C associated with SARS-CoV-2 with CMR evidence of myocardial necrosis in 18% of our cohort. CMR may be an important diagnostic tool to identify a subset of patients at risk for cardiac sequelae and more prone to myocardial damage. CLINICAL TRIAL REGISTRATION: The study has been registered on ClinicalTrials.gov, Identifier NCT04455347, registered on 01/07/2020, retrospectively registered.


Subject(s)
COVID-19 , Myocarditis , COVID-19/complications , Child , Contrast Media , Gadolinium , Humans , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Myocarditis/epidemiology , Predictive Value of Tests , Registries , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
10.
Heart Lung ; 52: 170-173, 2022.
Article in English | MEDLINE | ID: covidwho-1587703

ABSTRACT

Recently, new criteria for the diagnosis of pericarditis have been published. This paper has been thought to point out the limits in the new criteria specificity as well in the application of the new criteria for the diagnosis of pericarditis as recently demonstrated by studies based on cardiac magnetic resonance imaging. We report the case of A 18y old male with no significant past medical history who presented with complaints of chest pain typical for pericarditis, initially labeled as pericarditis; the patient was evaluated by electrocardiography, trans-thoracic echocardiography and cardiac magnetic resonance imaging; the condition, based on electrocardiogram and trans-thoracic echocardiography findings, was labeled as pericarditis in keeping with current diagnostic criteria. Cardiac magnetic resonance imaging demonstrated myocardial edema with no T2-defined pericardial inflammation on TIR/T2 imaging; late gadolinium enhancement imaging demonstrated multiple irregular, punctate, epicardial zones. The constellation of findings was consistent with acute myocarditis without pericardial involvement. In conclusion, limits in specificity of the newly published criteria for diagnosis of pericarditis, which add to the already demonstrated limits in sensitivity, subsist. Cardiac magnetic resonance imaging plays a unique role in the initial assessment of pericarditis; this is particularly important in the Covid-19 era in light of the increasing incidence of myocarditis and pericarditis; also, the case suggests that the combination of information between advanced echocardiography and cardiac magnetic resonance imaging may have an important diagnostic role in this setting. Additionally, we suggest that despite recent enthusiasm for colchicine, its role may be best defined in those with myocarditis, not pericarditis.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Contrast Media , Electrocardiography , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Male , Pericarditis/diagnostic imaging
11.
J Prim Care Community Health ; 12: 21501327211056800, 2021.
Article in English | MEDLINE | ID: covidwho-1546748

ABSTRACT

BACKGROUND: COVID-19 was initially considered to be a respiratory illness, but current findings suggest that SARS-CoV-2 is increasingly expressed in cardiac myocytes as well. COVID-19 may lead to cardiovascular injuries, resulting in myocarditis, with inflammation of the heart muscle. OBJECTIVE: This systematic review collates current evidence about demographics, symptomatology, diagnostic, and clinical outcomes of COVID-19 infected patients with myocarditis. METHODS: In accordance with PRISMA 2020 guidelines, a systematic search was conducted using PubMed, Cochrane Central, Web of Science and Google Scholar until August, 2021. A combination of the following keywords was used: SARS-CoV-2, COVID-19, myocarditis. Cohorts and case reports that comprised of patients with confirmed myocarditis due to COVID-19 infection, aged >18 years were included. The findings were tabulated and subsequently synthesized. RESULTS: In total, 54 case reports and 5 cohorts were identified comprising 215 patients. Hypertension (51.7%), diabetes mellitus type 2 (46.4%), cardiac comorbidities (14.6%) were the 3 most reported comorbidities. Majority of the patients presented with cough (61.9%), fever (60.4%), shortness of breath (53.2%), and chest pain (43.9%). Inflammatory markers were raised in 97.8% patients, whereas cardiac markers were elevated in 94.8% of the included patients. On noting radiographic findings, cardiomegaly (32.5%) was the most common finding. Electrocardiography testing obtained ST segment elevation among 44.8% patients and T wave inversion in 7.3% of the sample. Cardiovascular magnetic resonance imaging yielded 83.3% patients with myocardial edema, with late gadolinium enhancement in 63.9% patients. In hospital management consisted of azithromycin (25.5%), methylprednisolone/steroids (8.5%), and other standard care treatments for COVID-19. The most common in-hospital complication included acute respiratory distress syndrome (66.4%) and cardiogenic shock (14%). On last follow up, 64.7% of the patients survived, whereas 31.8% patients did not survive, and 3.5% were in the critical care unit. CONCLUSION: It is essential to demarcate COVID-19 infection and myocarditis presentations due to the heightened risk of death among patients contracting both myocardial inflammation and ARDS. With a multitude of diagnostic and treatment options available for COVID-19 and myocarditis, patients that are under high risk of suspicion for COVID-19 induced myocarditis must be appropriately diagnosed and treated to curb co-infections.


Subject(s)
COVID-19 , Myocarditis , Contrast Media , Gadolinium , Humans , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , SARS-CoV-2
12.
BMJ Case Rep ; 14(10)2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1501689

ABSTRACT

Previous reports have described non-ischaemic cardiomyopathy related to a variety of autoimmune diseases. However, very few case reports describe Sjögren disease as a contributing factor to cardiomyopathy. We report the case of a 69-year-old woman with a history of Sjögren disease who presented with cardiogenic shock. Laboratory testing and cardiac MRI revealing apical septal late gadolinium enhancement were consistent with an autoimmune aetiology. After ruling out ischaemic, infectious and other possible causes, the patient's clinical presentation was thought to be related to underlying Sjögren disease. She was treated with intravenous steroids and evidence-based heart failure therapy, but she eventually died after having declined heart transplantation. Given the rarity of Sjögren disease, no diagnostic criteria or standard treatment has been established for cardiomyopathy related to this disease. Diagnosis should be considered in patients who show evidence of autoimmune processes after other possible causes are ruled out.


Subject(s)
Cardiomyopathies , Sjogren's Syndrome , Aged , Cardiomyopathies/complications , Cardiomyopathies/diagnosis , Contrast Media , Female , Gadolinium , Humans , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/etiology , Sjogren's Syndrome/complications , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/drug therapy
13.
AJR Am J Roentgenol ; 218(4): 651-657, 2022 04.
Article in English | MEDLINE | ID: covidwho-1496868

ABSTRACT

BACKGROUND. A possible association has been reported between COVID-19 messenger RNA (mRNA) vaccination and myocarditis. OBJECTIVE. The purpose of our study was to describe cardiac MRI findings in patients with myocarditis after COVID-19 mRNA vaccination. METHODS. This retrospective study included patients without known prior SARS-CoV-2 infection who underwent cardiac MRI between May 14, 2021, and June 14, 2021, for suspected myocarditis within 2 weeks of COVID-19 mRNA vaccination. Information regarding clinical presentation, hospital course, and events after hospital discharge were recorded. A cardiothoracic imaging fellow and cardiothoracic radiologist reviewed cardiac MRI examinations in consensus. Data were summarized descriptively. RESULTS. Of 52 patients without known prior SARS-CoV-2 infection who underwent cardiac MRI during the study period, five underwent MRI for suspected myocarditis after recent COVID-19 mRNA vaccination. All five patients were male patients ranging in age from 16 to 19 years (mean, 17.2 ± 1.0 [SD] years) who presented within 4 days of receiving the second dose of a COVID-19 mRNA vaccine. Troponin levels were elevated in all patients (mean peak troponin I value, 6.82 ± 4.13 ng/mL). Alternate possible causes of myocarditis were deemed clinically unlikely on the basis of medical history, physical examination findings, myocarditis viral panel, and toxicology screening. Cardiac MRI findings were consistent with myocarditis in all five patients on the basis of the Lake Louise criteria, including early gadolinium enhancement and late gadolinium enhancement (LGE) in all patients and corresponding myocardial edema in four patients. All five patients had a favorable hospital course and were discharged from the hospital in stable condition with improved or resolved symptoms after hospitalization (mean length of hospital stay, 4.8 days). Two patients underwent repeat cardiac MRI that showed persistent, although decreased, LGE. Three patients reported mild intermittent self-resolving chest pain after hospital discharge, and two patients had no recurrent symptoms after discharge. CONCLUSION. In this small case series, all patients with myocarditis after COVID-19 vaccination were male adolescents and had a favorable initial clinical course. All patients showed cardiac MRI findings typical of myocarditis from other causes. LGE persisted in two patients who underwent repeat MRI. These observations do not establish causality. CLINICAL IMPACT. Radiologists should be aware of a possible association of COVID-19 mRNA vaccination and myocarditis and recognize the role of cardiac MRI in the assessment of suspected myocarditis after COVID-19 vaccination.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Male , Myocarditis/diagnostic imaging , Myocarditis/etiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effects , Vaccines, Synthetic , Young Adult
15.
Arch Cardiovasc Dis ; 114(12): 781-792, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487562

ABSTRACT

BACKGROUND: Inducible ischaemia is a strong marker of vascular vulnerability. Knowing the important role of the vascular tropism of COVID-19 to explain its severity, the presence of a prior inducible ischaemia may be a key pathogenetic determinant of COVID-19 severity. AIMS: To investigate the prognostic value of prior inducible ischaemia on stress cardiovascular magnetic resonance (CMR) to predict death in patients hospitalized for COVID-19. METHODS: We retrospectively analysed consecutive patients referred for stress perfusion CMR during 1/1/18-1/1/20 who were later hospitalized for COVID-19. The primary outcome was all-cause death, including in-hospital and post-hospitalization deaths, based on the electronic national death registry. RESULTS: Among the patients referred for stress CMR, 481 were hospitalized for COVID-19 (mean age 68.4±9.6years, 61.3% male) and completed the follow-up (median [interquartile range] 73 [36-101] days). There were 93 (19.3%) all-cause deaths, of which 13.7% occurred in hospital and 5.6% were post-hospitalization deaths. Age, male sex, hypertension, diabetes, known coronary artery disease (CAD), the presence of prior inducible ischaemia, the number of ischaemic segments, the presence of late gadolinium enhancement and left ventricular ejection fraction were significantly associated with all-cause death. In multivariable stepwise Cox regression analysis, age (hazard ratio [HR]: 1.04, 95% confidence interval [CI]: 1.01-1.07; P=0.023), hypertension (HR: 2.77; 95% CI: 1.71-4.51; P<0.001), diabetes (HR: 1.72; 95% CI: 1.08-2.74; P=0.022), known CAD (HR: 1.78; 95% CI: 1.07-2.94; P=0.025) and prior inducible ischaemia (HR 2.05; 95% CI: 1.27-3.33; P=0.004) were independent predictors of all-cause death. CONCLUSIONS: In COVID-19 patients, prior inducible ischaemia by stress CMR during the 2years preceding the COVID-19 pandemic was independently associated with all-cause death.


Subject(s)
COVID-19 , Aged , Contrast Media , Female , Gadolinium , Hospitalization , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Male , Middle Aged , Pandemics , Perfusion , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
16.
JACC Cardiovasc Imaging ; 15(4): 685-699, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1466593

ABSTRACT

COVID-19 is associated with myocardial injury caused by ischemia, inflammation, or myocarditis. Cardiovascular magnetic resonance (CMR) is the noninvasive reference standard for cardiac function, structure, and tissue composition. CMR is a potentially valuable diagnostic tool in patients with COVID-19 presenting with myocardial injury and evidence of cardiac dysfunction. Although COVID-19-related myocarditis is likely infrequent, COVID-19-related cardiovascular histopathology findings have been reported in up to 48% of patients, raising the concern for long-term myocardial injury. Studies to date report CMR abnormalities in 26% to 60% of hospitalized patients who have recovered from COVID-19, including functional impairment, myocardial tissue abnormalities, late gadolinium enhancement, or pericardial abnormalities. In athletes post-COVID-19, CMR has detected myocarditis-like abnormalities. In children, multisystem inflammatory syndrome may occur 2 to 6 weeks after infection; associated myocarditis and coronary artery aneurysms are evaluable by CMR. At this time, our understanding of COVID-19-related cardiovascular involvement is incomplete, and multiple studies are planned to evaluate patients with COVID-19 using CMR. In this review, we summarize existing studies of CMR for patients with COVID-19 and present ongoing research. We also provide recommendations for clinical use of CMR for patients with acute symptoms or who are recovering from COVID-19.


Subject(s)
COVID-19 , Myocarditis , COVID-19/complications , Child , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Spectroscopy/adverse effects , Myocarditis/etiology , Predictive Value of Tests , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
17.
J Cardiovasc Magn Reson ; 23(1): 106, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1455983

ABSTRACT

BACKGROUND: Myocarditis is a potential complication after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and a known cause of sudden cardiac death. Given the athletic demands of soldiers, identification of myocarditis and characterization of post-acute sequelae of SARS-CoV-2 infection with cardiovascular symptoms (CV PASC) may be critical to guide return-to-service. This study sought to evaluate the spectrum of cardiac involvement among soldiers with cardiopulmonary symptoms in the late convalescent phase of recovery from SARS-CoV-2 compared to a healthy soldier control group, and to determine the rate of progression to CV PASC. METHODS: All soldiers referred for cardiovascular magnetic resonance (CMR) imaging for cardiopulmonary symptoms following COVID-19 were enrolled and matched by age, gender, and athletic phenotype 1:1 to soldiers undergoing CMR in the year prior to the first case of COVID-19 at our institution. Demographic, clinical, laboratory, and imaging parameters were compared between groups. The diagnosis of acute myocarditis was made using modified Lake Louise criteria. Wilcoxon rank sum and chi-squared tests were used for comparison of continuous and categorical variables, respectively. RESULTS: Fifty soldier cases and 50 healthy soldier controls were included. The median time from SARS-CoV-2 detection to CMR was 71 days. The majority of cases experienced moderate symptoms (N = 43, 86%), while only 10% required hospitalization. The right ventricular (RV) ejection fraction (RVEF) was reduced in soldier cases compared to controls (51.0% vs. 53.2%, p = 0.012). Four cases were diagnosed with myocarditis (8%), 1 (2%) was diagnosed with Takotsubo cardiomyopathy, and 1 (2%) had new biventricular systolic dysfunction of unclear etiology. Isolated inferior RV septal insertion late gadolinium enhancement (LGE) was present in 8 cases and 8 controls (16% vs. 24%, p = 0.09). Seven of the 19 (37%) cases that completed an intermediate-term follow-up survey reported CV PASC at a median of 139 days of follow-up. Two of the 7 soldiers (29%) with CV PASC had a pathological clinical diagnosis (myocarditis) on CMR. CONCLUSIONS: Cardiovascular pathology was diagnosed in 6 symptomatic soldiers (12%) after recovery from SARS-CoV-2, with myocarditis found in 4 (8%). RVEF was reduced in soldier cases compared to controls. CV PASC occurred in over one-third of soldiers surveyed, but did not occur in any soldiers with asymptomatic acute SARS-CoV-2 infection.


Subject(s)
COVID-19 , Military Personnel , Myocarditis , COVID-19/complications , Case-Control Studies , Contrast Media , Gadolinium , Humans , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Myocarditis/etiology , Predictive Value of Tests , SARS-CoV-2
18.
Eur J Radiol ; 144: 109960, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415380

ABSTRACT

PURPOSE: High-resolution free-breathing late gadolinium enhancement (HR-LGE) was shown valuable for the diagnosis of acute coronary syndromes with non-obstructed coronary arteries. The method may be useful to detect COVID-related myocardial injuries but is hampered by prolonged acquisition times. We aimed to introduce an accelerated HR-LGE technique for the diagnosis of COVID-related myocardial injuries. METHOD: An undersampled navigator-gated HR-LGE (acquired resolution of 1.25 mm3) sequence combined with advanced patch-based low-rank reconstruction was developed and validated in a phantom and in 23 patients with structural heart disease (test cohort; 15 men; 55 ± 16 years). Twenty patients with laboratory-confirmed COVID-19 infection associated with troponin rise (COVID cohort; 15 men; 46 ± 24 years) prospectively underwent cardiovascular magnetic resonance (CMR) with the proposed sequence in our center. Image sharpness, quality, signal intensity differences and diagnostic value of free-breathing HR-LGE were compared against conventional breath-held low-resolution LGE (LR-LGE, voxel size 1.8x1.4x6mm). RESULTS: Structures sharpness in the phantom showed no differences with the fully sampled image up to an undersampling factor of x3.8 (P > 0.5). In patients (N = 43), this acceleration allowed for acquisition times of 7min21s ± 1min12s at 1.25 mm3 resolution. Compared with LR-LGE, HR-LGE showed higher image quality (P = 0.03) and comparable signal intensity differences (P > 0.5). In patients with structural heart disease, all LGE-positive segments on LR-LGE were also detected on HR-LGE (80/391) with 21 additional enhanced segments visible only on HR-LGE (101/391, P < 0.001). In 4 patients with COVID-19 history, HR-LGE was definitely positive while LR-LGE was either definitely negative (1 microinfarction and 1 myocarditis) or inconclusive (2 myocarditis). CONCLUSIONS: Undersampled free-breathing isotropic HR-LGE can detect additional areas of late enhancement as compared to conventional breath-held LR-LGE. In patients with history of COVID-19 infection associated with troponin rise, the method allows for detailed characterization of myocardial injuries in acceptable scan times and without the need for repeated breath holds.


Subject(s)
COVID-19 , Gadolinium , Contrast Media , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Male , Predictive Value of Tests , SARS-CoV-2
19.
Molecules ; 26(14)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1389470

ABSTRACT

A tripodal Schiff base ligand, 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine (MT) and its trinuclear Dy(III), Er(III), and Gd(III) complexes were synthesized. These were characterized using UV-visible, IR, 1H, and 13C NMR spectroscopies, elemental analysis, and molar conductivity measurements. The spectral studies indicate that the ligand is hexadentate and coordinates to the Ln(III) ions through the oxygen atoms of the carboxylic group. The trinuclear complexes were characterized as being bridged by carboxylate anions to the Dy(III), Er(III), and Gd(III) salen centers and displaying a coordination number of six. Biological studies revealed that MT is more active against the test micro-organisms relative to the trinuclear complexes. Acute toxicity studies revealed that MT is safe and has a wide range of effective doses (ED50). In vivo antimalarial studies indicate that MT could serve as an effective antimalarial agent since it has parasitemia inhibition of 84.02% at 50 mg/kg and 65.81% at 25 mg/kg, close to the value (87.22%) of the standard drug-Artesunate. Molecular docking simulation studies on the compounds against SARS-CoV-2 (6Y84) and E. coli DNA gyrase (5MMN) revealed effective binding interactions through multiple bonding modes. The binding energy calculated for Er(III)MT-6Y84 and Er(III)MT-5MMN complexes showed active molecules with the ability to inhibit SARS-CoV-2 and E. coli DNA gyrase.


Subject(s)
Triazines/chemistry , Triazines/pharmacology , Anions/chemistry , Carboxylic Acids/chemistry , Computer Simulation , Coordination Complexes/chemistry , Crystallography, X-Ray/methods , Dysprosium/chemistry , Erbium/chemistry , Gadolinium/chemistry , Lanthanoid Series Elements/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Molecular Docking Simulation , Molecular Structure , Schiff Bases/chemistry , Triazines/chemical synthesis
20.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1359109

ABSTRACT

Trials of coronavirus disease 2019 (COVID-19) vaccination included limited numbers of children, so they may not have detected rare but important adverse events in this population. We report 7 cases of acute myocarditis or myopericarditis in healthy male adolescents who presented with chest pain all within 4 days after the second dose of Pfizer-BioNTech COVID-19 vaccination. Five patients had fever around the time of presentation. Acute COVID-19 was ruled out in all 7 cases on the basis of negative severe acute respiratory syndrome coronavirus 2 real-time reverse transcription polymerase chain reaction test results of specimens obtained by using nasopharyngeal swabs. None of the patients met criteria for multisystem inflammatory syndrome in children. Six of the 7 patients had negative severe acute respiratory syndrome coronavirus 2 nucleocapsid antibody assay results, suggesting no previous infection. All patients had an elevated troponin. Cardiac MRI revealed late gadolinium enhancement characteristic of myocarditis. All 7 patients resolved their symptoms rapidly. Three patients were treated with nonsteroidal antiinflammatory drugs only, and 4 received intravenous immunoglobulin and corticosteroids. In this report, we provide a summary of each adolescent's clinical course and evaluation. No causal relationship between vaccine administration and myocarditis has been established. Continued monitoring and reporting to the US Food and Drug Administration Vaccine Adverse Event Reporting System is strongly recommended.


Subject(s)
COVID-19 Vaccines/adverse effects , Myocarditis/etiology , Acute Disease , Adolescent , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , Coronavirus Nucleocapsid Proteins/immunology , Gadolinium , Humans , Magnetic Resonance Imaging , Male , Myocarditis/diagnostic imaging , Phosphoproteins/immunology , Systemic Inflammatory Response Syndrome/diagnosis , Time Factors , Troponin/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL