Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add filters

Document Type
Year range
1.
PLoS One ; 17(1): e0262057, 2022.
Article in English | MEDLINE | ID: covidwho-1622351

ABSTRACT

Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15-2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.


Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Respiratory Tract Infections/microbiology , Animals , Bacteria/growth & development , Humans
2.
Nat Commun ; 12(1): 6243, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493101

ABSTRACT

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Microbiota/physiology , SARS-CoV-2/pathogenicity , Transcriptome/genetics
3.
Biomed Res Int ; 2021: 7880448, 2021.
Article in English | MEDLINE | ID: covidwho-1455779

ABSTRACT

COVID-19-associated neuropsychiatric complications are soaring. There is an urgent need to understand the link between COVID-19 and neuropsychiatric disorders. To that end, this article addresses the premise that SARS-CoV-2 infection results in gut dysbiosis and an altered microbiota-gut-brain (MGB) axis that in turn contributes to the neuropsychiatric ramifications of COVID-19. Altered MGB axis activity has been implicated independently as a risk of neuropsychiatric disorders. A review of the changes in gut microbiota composition in individual psychiatric and neurological disorders and gut microbiota in COVID-19 patients revealed a shared "microbial signature" characterized by a lower microbial diversity and richness and a decrease in health-promoting anti-inflammatory commensal bacteria accompanied by an increase in opportunistic proinflammatory pathogens. Notably, there was a decrease in short-chain fatty acid (SCFA) producing bacteria. SCFAs are key bioactive microbial metabolites with anti-inflammatory functions and have been recognized as a critical signaling pathway in the MGB axis. SCFA deficiency is associated with brain inflammation, considered a cardinal feature of neuropsychiatric disorders. The link between SARS-CoV-2 infection, gut dysbiosis, and altered MGB axis is further supported by COVID-19-associated gastrointestinal symptoms, a high number of SARS-CoV-2 receptors, angiotensin-cleaving enzyme-2 (ACE-2) in the gut, and viral presence in the fecal matter. The binding of SARS-CoV-2 to the receptor results in ACE-2 deficiency that leads to decreased transport of vital dietary components, gut dysbiosis, proinflammatory gut status, increased permeability of the gut-blood barrier (GBB), and systemic inflammation. More clinical research is needed to substantiate further the linkages described above and evaluate the potential significance of gut microbiota as a diagnostic tool. Meanwhile, it is prudent to propose changes in dietary recommendations in favor of a high fiber diet or supplementation with SCFAs or probiotics to prevent or alleviate the neuropsychiatric ramifications of COVID-19.


Subject(s)
COVID-19/psychology , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Bacteria/metabolism , Brain/metabolism , Brain/pathology , COVID-19/metabolism , COVID-19/microbiology , COVID-19/virology , Diet , Dysbiosis , Feces/microbiology , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome/immunology , Humans , Inflammation , Probiotics/pharmacology , SARS-CoV-2/isolation & purification
4.
Nutrients ; 13(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1430928

ABSTRACT

Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.


Subject(s)
Bacterial Physiological Phenomena , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Taste Perception , Animals , Antineoplastic Agents/therapeutic use , Bariatric Surgery , COVID-19/physiopathology , Diet , Dysbiosis/physiopathology , Feeding Behavior , Hormones/metabolism , Humans , Inflammatory Bowel Diseases/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/physiology , Toll-Like Receptors/metabolism
5.
Cells ; 10(6)2021 06 17.
Article in English | MEDLINE | ID: covidwho-1369745

ABSTRACT

Hypertension is associated with gut bacterial dysbiosis and gut pathology in animal models and people. Butyrate-producing gut bacteria are decreased in hypertension. RNA-seq analysis of gut colonic organoids prepared from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to test the hypothesis that impaired interactions between the gut microbiome and gut epithelium are involved and that these would be remediated with butyrate supplementation. Gene expressions in immune responses including antigen presentation and antiviral pathways were decreased in the gut epithelium of the SHR in organoids and confirmed in vivo; these deficits were corrected by butyrate supplementation. Deficits in gene expression driving epithelial proliferation and differentiation were also observed in SHR. These findings highlight the importance of aligned interactions of the gut microbiome and gut immune responses to blood pressure homeostasis.


Subject(s)
Colon/microbiology , Dysbiosis , Gastrointestinal Microbiome/physiology , Hypertension/microbiology , Animals , Butyrates/pharmacology , Colon/drug effects , Gastrointestinal Microbiome/drug effects , Male , Organoids , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Transcriptome
7.
Microbiol Spectr ; 9(1): e0053621, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352542

ABSTRACT

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood. In this context, we characterized the cecal and lung microbiomes of SARS-CoV-2-challenged K18-hACE2 transgenic mice in the presence or absence of treatment with the Mpro inhibitor GC-376. Cecum microbiome showed decreased Shannon and inverse (Inv) Simpson diversity indexes correlating with SARS-CoV-2 infection dosage and a difference of Bray-Curtis dissimilarity distances among control and infected mice. Bacterial phyla such as Firmicutes, particularly, Lachnospiraceae and Oscillospiraceae, were significantly less abundant, while Verrucomicrobia, particularly, the family Akkermansiaceae, were increasingly more prevalent during peak infection in mice challenged with a high virus dose. In contrast to the cecal microbiome, the lung microbiome showed similar microbial diversity among the control, low-, and high-dose challenge virus groups, independent of antiviral treatment. Bacterial phyla in the lungs such as Bacteroidetes decreased, while Firmicutes and Proteobacteria were significantly enriched in mice challenged with a high dose of SARS-CoV-2. In summary, we identified changes in the cecal and lung microbiomes of K18-hACE2 mice with severe clinical signs of SARS-CoV-2 infection. IMPORTANCE The COVID-19 pandemic has resulted in millions of deaths. The host's respiratory and intestinal microbiome can affect directly or indirectly the immune system during viral infections. We characterized the cecal and lung microbiomes in a relevant mouse model challenged with a low or high dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence or absence of an antiviral Mpro inhibitor, GC-376. Decreased microbial diversity and taxonomic abundances of the phyla Firmicutes, particularly, Lachnospiraceae, correlating with infection dosage were observed in the cecum. In addition, microbes within the family Akkermansiaceae were increasingly more prevalent during peak infection, which is observed in other viral infections. The lung microbiome showed similar microbial diversity to that of the control, independent of antiviral treatment. Decreased Bacteroidetes and increased Firmicutes and Proteobacteria were observed in the lungs in a virus dose-dependent manner. These studies add to a better understanding of the complexities associated with the intestinal microbiome during respiratory infections.


Subject(s)
COVID-19/immunology , COVID-19/microbiology , Gastrointestinal Microbiome/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents , Biodiversity , Disease Models, Animal , Female , Lung/immunology , Melphalan , Mice , Mice, Transgenic , Virus Diseases/immunology , gamma-Globulins
8.
Cells ; 10(8)2021 08 06.
Article in English | MEDLINE | ID: covidwho-1348604

ABSTRACT

The coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 2 (SARS-CoV-2). In addition to pneumonia, individuals affected by the disease have neurological symptoms. Indeed, SARS-CoV-2 has a neuroinvasive capacity. It is known that the infection caused by SARS-CoV-2 leads to a cytokine storm. An exacerbated inflammatory state can lead to the blood-brain barrier (BBB) damage as well as to intestinal dysbiosis. These changes, in turn, are associated with microglial activation and reactivity of astrocytes that can promote the degeneration of neurons and be associated with the development of psychiatric disorders and neurodegenerative diseases. Studies also have been shown that SARS-CoV-2 alters the composition and functional activity of the gut microbiota. The microbiota-gut-brain axis provides a bidirectional homeostatic communication pathway. Thus, this review focuses on studies that show the relationship between inflammation and the gut microbiota-brain axis in SARS-CoV-2 infection.


Subject(s)
Brain/physiology , COVID-19/physiopathology , Gastrointestinal Microbiome/physiology , Dysbiosis , Humans , Inflammation , Mood Disorders , Nervous System Diseases
9.
NPJ Biofilms Microbiomes ; 7(1): 61, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322476

ABSTRACT

The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/physiology , SARS-CoV-2/isolation & purification , Viral Load , Bacteria/classification , Bacteria/genetics , COVID-19/diagnosis , COVID-19/virology , Feces/microbiology , Female , Hospitalization , Humans , Male , Mouth/microbiology , RNA, Ribosomal, 16S , SARS-CoV-2/genetics
10.
Curr Opin Virol ; 49: 151-156, 2021 08.
Article in English | MEDLINE | ID: covidwho-1271612

ABSTRACT

Intestinal microbiota have profound effects on viral infections locally and systemically. While they can directly influence enteric virus infections, there is also an increasing appreciation for the role of microbiota-derived metabolites in regulating virus infections. Because metabolites diffuse across the intestinal epithelium and enter circulation, they can influence host response to pathogens at extraintestinal sites. In this review, we summarize the effects of three types of microbiota-derived metabolites on virus infections. While short-chain fatty acids serve to regulate the extent of inflammation associated with viral infections, the flavonoid desaminotyrosine and bile acids generally regulate interferon responses. A common theme that emerges is that microbiota-derived metabolites can have proviral and antiviral effects depending on the virus in question. Understanding the molecular mechanisms by which microbiota-derived metabolites impact viral infections and the highly conditional nature of these responses should pave the way to developing novel rational antivirals.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Virus Diseases/microbiology , Virus Diseases/physiopathology , Bile Acids and Salts/metabolism , Fatty Acids, Volatile/metabolism , Flavonoids/metabolism , Humans , Inflammation , Interferons/metabolism , Virus Diseases/immunology
11.
Gac Med Mex ; 157(2): 194-200, 2021.
Article in English | MEDLINE | ID: covidwho-1285651

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected all dimensions of health care, including exclusive breastfeeding assurance and its promotion. The risk of contagion and the consequences of the pandemic have raised concerns among future mothers or in those who are already breastfeeding due to the risk of possible transmission of the virus through breast milk, although active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not yet been detected in breast milk. The fear of contagion has favored mother-child isolation policies. So far, there is no evidence of vertical transmission, and the risk of horizontal transmission in the infant is similar to that of the general population. In infants with COVID-19, breastfeeding can even favorably change the clinical course of the disease.


La pandemia de enfermedad por coronavirus 2019 (COVID-19) ha afectado a todas las dimensiones de la atención en salud, entre ellas el aseguramiento de la lactancia materna exclusiva y su promoción. El riesgo de contagio y las consecuencias de la pandemia han provocado preocupación entre las futuras madres o las que se ya encuentran lactando debido al riesgo de una posible transmisión del virus a través de la leche materna. Aunque aún no se ha detectado el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2) activo en la leche materna. El miedo al contagio ha favorecido las políticas de aislamiento madre-hijo. Hasta el momento no existe evidencia de transmisión vertical y el riesgo de transmisión horizontal en el lactante es similar al de la población general. En lactantes con COVID-19 la lactancia materna incluso puede cambiar favorablemente el curso clínico de la enfermedad.


Subject(s)
Breast Feeding , COVID-19 , Milk, Human , Pandemics , Breast Feeding/psychology , COVID-19/epidemiology , COVID-19/transmission , Colostrum/chemistry , Colostrum/metabolism , Disease Transmission, Infectious , Female , Gastrointestinal Microbiome/physiology , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Milk, Human/chemistry , Milk, Human/cytology , Milk, Human/metabolism , Milk, Human/virology , SARS-CoV-2/isolation & purification , Time Factors
12.
Front Biosci (Landmark Ed) ; 26(6): 135-148, 2021 05 30.
Article in English | MEDLINE | ID: covidwho-1281062

ABSTRACT

The human body is colonized from the birth by a large number of microorganisms. This will constitute a real "functional microbial organ" that is fundamental for homeostasis and therefore for health in humans. Those microorganisms. The microbial populations that colonize humans creating a specific ecosystem they have been collectively referred to as "human microbiota" or "human normal microflora". The microbiota play an important pathophysiological role in the various locations of the human body. This article focuses on one of the most important, that is the enteric microbiota. The composition (quantitative and qualitative) of microbes is analyzed in relation to age and environment during the course of human life. It also highlights eubiosis and dysbiosis as key terms for its role in health and disease. Finally, it analyzes its bi-directional relationship with the microbiota of the lungs, skin and that of the brain, and consequently for the whole central and peripheral nervous system for the maintenance of health in the human body.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Health Status , Homeostasis/physiology , Bacteria/classification , Brain/physiology , Cytokines/metabolism , Gastrointestinal Tract/physiology , Humans , Lung/physiology , Population Dynamics
13.
J Genet Genomics ; 48(9): 803-814, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1253198

ABSTRACT

Children are less susceptible to coronavirus disease 2019 (COVID-19), and they have manifested lower morbidity and mortality after infection, for which a multitude of mechanisms may be considered. Whether the normal development of the gut-airway microbiome in children is affected by COVID-19 has not been evaluated. Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the upper respiratory tract and the gut microbiomes in nine children. The alteration of the microbiome is dominated by the genus Pseudomonas, and it sustains for up to 25-58 days in different individuals. Moreover, the patterns of alternation are different between the upper respiratory tract and the gut. Longitudinal investigation shows that the upper respiratory tract and the gut microbiomes are extremely variable among children during the course of COVID-19. The dysbiosis of microbiome persists in 7 of 8 children for at least 19-24 days after discharge from the hospital. Disturbed development of both the gut and the upper respiratory microbiomes and prolonged dysbiosis in these nine children imply possible long-term complications after clinical recovery from COVID-19, such as predisposition to the increased health risk in the post-COVID-19 era.


Subject(s)
COVID-19/pathology , Computational Biology/methods , Respiratory Tract Infections/microbiology , Dysbiosis/microbiology , Dysbiosis/pathology , Gastrointestinal Microbiome/physiology , Humans
14.
Gut Microbes ; 13(1): 1-7, 2021.
Article in English | MEDLINE | ID: covidwho-1219896

ABSTRACT

Mortality and morbidity from SARS-CoV2 (COVID-19) infections in children remains low, including an exceedingly low rate of horizontal and vertical transmission. However, unforeseen complications to childhood health have emerged secondary to the pandemic. Few studies to date have examined unintended complications of the pandemic in newborns and infants. In this Commentary, we discuss the impact that COVID-19 may have on inheritance of the newborn microbiome and its assembly throughout the first years of life. In the early stages of the pandemic when vertical transmission of COVID-19 was poorly understood, several studies reported increased rates of C-sections in COVID-19 positive women. Initial recommendations discouraged COVID-19 positive mothers from breastfeeding and participating in skin-to-skin care, advising them to isolate during their window of infectivity. These shifts in perinatal care can adversely impact microbial colonization during the first 1000 days of life. While obstetrical and neonatal management have evolved to reflect our current knowledge of perinatal transmission, we are observing other changes in early life exposures of infants, including increased attention to hygiene, fewer social interactions, and decreased global travel, all of which are major drivers of early-life gut colonization. Composition of the gut microbiota in adults directly impacts severity of infection, suggesting a role of microbial communities in modulating immune responses to COVID-19. Conversely, the role of the intestinal microbiome in susceptibility and severity of COVID-19 in newborns and children remains unknown. The onset of adulthood diseases is related to the establishment of a healthy gut microbiome during childhood. As we continue to define COVID-19 biology, further research is necessary to understand how acquisition of the neonatal microbiome is affected by the pandemic. Furthermore, infection control measures must be balanced with strategies that promote microbial diversity to impart optimal health outcomes and potentially modulate susceptibility of children to COVID-19.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Gastrointestinal Microbiome/physiology , Infectious Disease Transmission, Vertical , Microbiota/physiology , Pregnancy Complications, Infectious/etiology , Pregnancy Complications, Infectious/physiopathology , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , SARS-CoV-2
15.
J Genet Genomics ; 48(9): 792-802, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1213358

ABSTRACT

Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.


Subject(s)
Gastrointestinal Microbiome/physiology , Inflammation/metabolism , COVID-19/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Humans , Inflammation/genetics , Proteomics/methods
16.
Mediators Inflamm ; 2021: 6611222, 2021.
Article in English | MEDLINE | ID: covidwho-1201585

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is responsible for the outbreak of a new viral respiratory infection. It has been demonstrated that the microbiota has a crucial role in establishing immune responses against respiratory infections, which are controlled by a bidirectional cross-talk, known as the "gut-lung axis." The effects of microbiota on antiviral immune responses, including dendritic cell (DC) function and lymphocyte homing in the gut-lung axis, have been reported in the recent literature. Additionally, the gut microbiota composition affects (and is affected by) the expression of angiotensin-converting enzyme-2 (ACE2), which is the main receptor for SARS-CoV-2 and contributes to regulate inflammation. Several studies demonstrated an altered microbiota composition in patients infected with SARS-CoV-2, compared to healthy individuals. Furthermore, it has been shown that vaccine efficacy against viral respiratory infection is influenced by probiotics pretreatment. Therefore, the importance of the gut microbiota composition in the lung immune system and ACE2 expression could be valuable to provide optimal therapeutic approaches for SARS-CoV-2 and to preserve the symbiotic relationship of the microbiota with the host.


Subject(s)
Gastrointestinal Microbiome/physiology , Microbiota/physiology , COVID-19/microbiology , Humans , Probiotics/therapeutic use , SARS-CoV-2/pathogenicity
17.
Am J Chin Med ; 49(4): 785-803, 2021.
Article in English | MEDLINE | ID: covidwho-1186370

ABSTRACT

The coronavirus disease 2019 (COVID-19) spreads and rages around the world and threatens human life. It is disappointing that there are no specific drugs until now. The combination of traditional Chinese medicine (TCM) and western medication seems to be the current more effective treatment strategy for COVID-19 patients in China. In this review, we mainly discussed the relationship between COVID-19 and gut microbiota (GM), as well as the possible impact of TCM combined with western medication on GM in the treatment of COVID-19 patients, aiming to provide references for the possible role of GM in TCM against COVID-19. The available data suggest that GM dysbiosis did occur in COVID-19 patients, and the intervention of GM could ameliorate the clinical condition of COVID-19 patients. In addition, TCMs (e.g., Jinhua Qinggan granule, Lianhua Qingwen capsule, Qingfei Paidu decoction, Shufeng Jiedu capsule, Qingjin Jianghuo decoction, Toujie Quwen granules, and MaxingShigan) have been proven to be safe and effective for the treatment of COVID-19 in Chinese clinic. Among them, Ephedra sinica, Glycyrrhiza uralensis, Bupleurum chinense, Lonicera japonica,Scutellaria baicalensi, and Astragalus membranaceus are common herbs and have a certain regulation on GM, immunity, and angiotensin converting enzyme 2 (ACE2). Notably, Qingfei Paidu decoction and MaxingShigan have been demonstrated to modulate GM. Finally, the hypothesis of GM-mediated TCM treatment of COVID-19 is proposed, and more clinical trials and basic experiments need to be initiated to confirm this hypothesis.


Subject(s)
COVID-19/therapy , Gastrointestinal Microbiome/physiology , Medicine, Chinese Traditional/methods , Pandemics , SARS-CoV-2
18.
Commun Biol ; 4(1): 480, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1182874

ABSTRACT

The relationship between gut microbes and COVID-19 or H1N1 infections is not fully understood. Here, we compared the gut mycobiota of 67 COVID-19 patients, 35 H1N1-infected patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing and analysed their associations with clinical features and the bacterial microbiota. Compared to HCs, the fungal burden was higher. Fungal mycobiota dysbiosis in both COVID-19 and H1N1-infected patients was mainly characterized by the depletion of fungi such as Aspergillus and Penicillium, but several fungi, including Candida glabrata, were enriched in H1N1-infected patients. The gut mycobiota profiles in COVID-19 patients with mild and severe symptoms were similar. Hospitalization had no apparent additional effects. In COVID-19 patients, Mucoromycota was positively correlated with Fusicatenibacter, Aspergillus niger was positively correlated with diarrhoea, and Penicillium citrinum was negatively correlated with C-reactive protein (CRP). In H1N1-infected patients, Aspergillus penicilloides was positively correlated with Lachnospiraceae members, Aspergillus was positively correlated with CRP, and Mucoromycota was negatively correlated with procalcitonin. Therefore, gut mycobiota dysbiosis occurs in both COVID-19 patients and H1N1-infected patients and does not improve until the patients are discharged and no longer require medical attention.


Subject(s)
COVID-19/physiopathology , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Influenza, Human/physiopathology , Adult , Aged , Bacteria/classification , Bacteria/genetics , COVID-19/virology , Feces/microbiology , Female , Fungi/classification , Fungi/genetics , Gastrointestinal Microbiome/genetics , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/virology , Male , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, DNA/methods
19.
J Leukoc Biol ; 109(3): 513-517, 2021 03.
Article in English | MEDLINE | ID: covidwho-1100872

ABSTRACT

Metchnikoff's essay, Intestinal Bacteriotherapy, was written when the study of microbiology was still in its infancy and few intestinal diseases had been ascribed to a specific bacterial infection. Metchnikoff offered perceptive ideas that have become standard in today's science. This Historical Perspectives commentary examines how Metchnikoff's article influenced our field. An accompanying editorial by Siamon Gordon explores this topic further and describes the relevance of Metchnikoff's work to the current Covid-19 infection. We also include a translation of this fundamental article by Metchnikoff, as presented by Claudine Neyen.


Subject(s)
Gastrointestinal Microbiome/physiology , Microbiology/history , Animals , COVID-19 , History, 19th Century , History, 20th Century , Humans , SARS-CoV-2
20.
Nutrients ; 13(2)2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-1094259

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death worldwide, claiming over 650,000 American lives annually. Typically not a singular disease, CVD often coexists with dyslipidemia, hypertension, type-2 diabetes (T2D), chronic system-wide inflammation, and obesity. Obesity, an independent risk factor for both CVD and T2D, further worsens the problem, with over 42% of adults and 18.5% of youth in the U.S. categorized as such. Dietary behavior is a most important modifiable risk factor for controlling the onset and progression of obesity and related disease conditions. Plant-based eating patterns that include beans and legumes support health and disease mitigation through nutritional profile and bioactive compounds including phytochemical. This review focuses on the characteristics of beans and ability to improve obesity-related diseases and associated factors including excess body weight, gut microbiome environment, and low-grade inflammation. Additionally, there are growing data that link obesity to compromised immune response and elevated risk for complications from immune-related diseases. Body weight management and nutritional status may improve immune function and possibly prevent disease severity. Inclusion of beans as part of a plant-based dietary strategy imparts cardiovascular, metabolic, and colon protective effects; improves obesity, low-grade inflammation, and may play a role in immune-related disease risk management.


Subject(s)
Cardiovascular Diseases/prevention & control , Diet, Vegetarian/methods , Fabaceae , Obesity/prevention & control , Amino Acids/administration & dosage , COVID-19/complications , Cardiovascular Diseases/epidemiology , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Dietary Proteins/administration & dosage , Dysbiosis/etiology , Dyslipidemias/epidemiology , Dyslipidemias/prevention & control , Endothelium, Vascular/physiopathology , Fabaceae/chemistry , Fatty Acid Synthases , Female , Gastrointestinal Microbiome/physiology , Glycemic Control , Humans , Hypertension/epidemiology , Hypertension/prevention & control , Immune System Diseases/prevention & control , Inflammation/epidemiology , Inflammation/prevention & control , Male , Minerals/administration & dosage , NADH, NADPH Oxidoreductases , Nutritional Status , Obesity/epidemiology , Obesity/immunology , Overweight/complications , Phaseolus/chemistry , Recommended Dietary Allowances , Risk Factors , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...