Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Nat Commun ; 14(1): 2484, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2302122

ABSTRACT

Tissues are highly complicated with spatial heterogeneity in gene expression. However, the cutting-edge single-cell RNA-seq technology eliminates the spatial information of individual cells, which contributes to the characterization of cell identities. Herein, we propose single-cell spatial position associated co-embeddings (scSpace), an integrative method to identify spatially variable cell subpopulations by reconstructing cells onto a pseudo-space with spatial transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark scSpace with both simulated and biological datasets, and demonstrate that scSpace can accurately and robustly identify spatially variated cell subpopulations. When employed to reconstruct the spatial architectures of complex tissue such as the brain cortex, the small intestinal villus, the liver lobule, the kidney, the embryonic heart, and others, scSpace shows promising performance on revealing the pairwise cellular spatial association within single-cell data. The application of scSpace in melanoma and COVID-19 exhibits a broad prospect in the discovery of spatial therapeutic markers.


Subject(s)
COVID-19 , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
2.
Front Cell Infect Microbiol ; 13: 1139998, 2023.
Article in English | MEDLINE | ID: covidwho-2301324

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods: Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results: Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion: The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/genetics , Cyclooxygenase 2 , Random Forest , Gene Expression Profiling/methods , Computational Biology/methods , Proto-Oncogene Proteins c-bcl-2
3.
Ther Adv Cardiovasc Dis ; 17: 17539447231168471, 2023.
Article in English | MEDLINE | ID: covidwho-2295311

ABSTRACT

BACKGROUND: Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS: We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS: A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS: This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.


Subject(s)
Cardiovascular Diseases , Heart Failure , MicroRNAs , Humans , Gene Expression Profiling/methods , Biomarkers , MicroRNAs/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Heat-Shock Proteins/genetics , Cullin Proteins/genetics
4.
Comput Biol Med ; 157: 106733, 2023 05.
Article in English | MEDLINE | ID: covidwho-2263368

ABSTRACT

Single-cell transcriptomics provides researchers with a powerful tool to resolve the transcriptome heterogeneity of individual cells. However, this method falls short in revealing cellular heterogeneity at the protein level. Previous single-cell multiomics studies have focused on data integration rather than exploiting the full potential of multiomics data. Here we introduce a new analysis framework, gene function and protein association (GFPA), that mines reliable associations between gene function and cell surface protein from single-cell multimodal data. Applying GFPA to human peripheral blood mononuclear cells (PBMCs), we observe an association of epithelial mesenchymal transition (EMT) with the CD99 protein in CD4 T cells, which is consistent with previous findings. Our results show that GFPA is reliable across multiple cell subtypes and PBMC samples. The GFPA python packages and detailed tutorials are freely available at https://github.com/studentiz/GFPA.


Subject(s)
Leukocytes, Mononuclear , Multiomics , Humans , Membrane Proteins , Gene Expression Profiling/methods , Transcriptome
5.
J Infect Public Health ; 16(5): 746-753, 2023 May.
Article in English | MEDLINE | ID: covidwho-2281062

ABSTRACT

BACKGROUND: Coronavirus disease 2019(COVID-19) caused a large number of infections worldwide. Although some patients recovered from the disease, some of the other problems that accompanied it, such as cardiac injury, could affect the patient's subsequent quality of life and prognosis. OBJECTIVES: To clarify the molecular mechanism of cardiac injury in SARS-CoV-2 Infection. METHODS: The RNA-Seq dataset (GSE184715) comparing expression profiling of Mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes(DEGs) were performed by the R software. Degs were analyzed by enrichment analysis to clarify the affected pathways. Hub genes were screened out by a PPI network constructed from Degs. Finally, Connectivity Map was used to screen for the treatment of COVID-19 induced cardiac injury. RESULTS: 2705 differentially expressed genes were identified. Enrichment analysis confirmed that mitochondrial dysfunction was caused by SARS-CoV-2, meanwhile, cardiac muscle contraction was suppressed and NF-κB was activated. Based on the PPI network, 15 hub genes were identified. These 15 down-regulated hub genes were mainly involved in the reduced activity of complexes in the mitochondrial respiratory chain associated with mitochondrial dysfunction. Moreover, 5 candidate drugs were identified to treat cardiac injury. CONCLUSION: In conclusion, SARS-CoV-2 infection of cardiomyocytes causes mitochondrial dysfunction, including reduced mitochondrial respiratory chain complex activity and decreased ATP synthesis, leading to cardiomyocyte apoptosis, while the activated NF-κB also induced cytokine storms, ultimately resulting in cardiac injury.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Gene Expression Profiling/methods , NF-kappa B , Quality of Life , Computational Biology/methods
6.
Cytokine ; 166: 156187, 2023 06.
Article in English | MEDLINE | ID: covidwho-2279243

ABSTRACT

COVID-19 is associated with dysregulation of several genes and signaling pathways. Based on the importance of expression profiling in identification of the pathogenesis of COVID-19 and proposing novel therapies for this disorder, we have employed an in silico approach to find differentially expressed genes between COVID-19 patients and healthy controls and their relevance with cellular functions and signaling pathways. We obtained 630 DEmRNAs, including 486 down-regulated DEGs (such as CCL3 and RSAD2) and 144 up-regulated DEGs (such as RHO and IQCA1L), and 15 DElncRNAs, including 9 down-regulated DElncRNAs (such as PELATON and LINC01506) and 6 up-regulated DElncRNAs (such as AJUBA-DT and FALEC). The PPI network of DEGs showed the presence of a number immune-related genes such as those coding for HLA molecules and interferon regulatory factors. Taken together, these results highlight the importance of immune-related genes and pathways in the pathogenesis of COVID-19 and suggest novel targets for treatment of this disorder.


Subject(s)
COVID-19 , Gene Expression Profiling , Humans , Gene Expression Profiling/methods , Systems Biology , SARS-CoV-2/genetics , Computational Biology/methods , COVID-19/genetics , RNA-Seq , LIM Domain Proteins
7.
BMC Genomics ; 24(1): 76, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2288710

ABSTRACT

Since genes do not function individually, the gene module is considered an important tool for interpreting gene expression profiles. In order to consider both functional similarity and expression similarity in module identification, GMIGAGO, a functional Gene Module Identification algorithm based on Genetic Algorithm and Gene Ontology, was proposed in this work. GMIGAGO is an overlapping gene module identification algorithm, which mainly includes two stages: In the first stage (initial identification of gene modules), Improved Partitioning Around Medoids Based on Genetic Algorithm (PAM-GA) is used for the initial clustering on gene expression profiling, and traditional gene co-expression modules can be obtained. Only similarity of expression levels is considered at this stage. In the second stage (optimization of functional similarity within gene modules), Genetic Algorithm for Functional Similarity Optimization (FSO-GA) is used to optimize gene modules based on gene ontology, and functional similarity within gene modules can be improved. Without loss of generality, we compared GMIGAGO with state-of-the-art gene module identification methods on six gene expression datasets, and GMIGAGO identified the gene modules with the highest functional similarity (much higher than state-of-the-art algorithms). GMIGAGO was applied in BRCA, THCA, HNSC, COVID-19, Stem, and Radiation datasets, and it identified some interesting modules which performed important biological functions. The hub genes in these modules could be used as potential targets for diseases or radiation protection. In summary, GMIGAGO has excellent performance in mining molecular mechanisms, and it can also identify potential biomarkers for individual precision therapy.


Subject(s)
COVID-19 , Gene Regulatory Networks , Humans , Gene Ontology , Algorithms , Gene Expression Profiling/methods , Transcriptome
8.
Sci Rep ; 13(1): 5599, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2272667

ABSTRACT

COVID-19 is a newly recognized illness with a predominantly respiratory presentation. Although initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID-19, they have yet to identify clinically applicable biomarkers, so we need disease-specific diagnostic biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles of COVID-19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID-19 potential Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding shared pathways of peripheral blood and the most involved tissues in COVID-19 patients. This step was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential Blood DEGs of COVID-19 versus Influenza (DifBDs) were found by extracting DEGs involved in only enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning method (a wrapper feature selection approach supervised by four classifiers of k-NN, Random Forest, SVM, Naïve Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most predictive combination of them to select COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms were built to assess their performance on an external dataset. Among all the extracted DEGs from the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC, IGLV3-16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty-three pathways enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs. Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3-23, IGLV2-11 and RPL31 were selected as the most predictable DifBBSs. The constructed model based on these genes and Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several candidate blood biomarkers for a potential specific and differential diagnosis of COVID-19. The proposed biomarkers could be valuable targets for practical investigations to validate their potential.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Bayes Theorem , Influenza A Virus, H3N2 Subtype , Gene Expression Profiling/methods , Biomarkers , Formins
9.
Genomics Proteomics Bioinformatics ; 20(5): 814-835, 2022 10.
Article in English | MEDLINE | ID: covidwho-2252969

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological processes, such as those occurring during the development of complex organisms, and improved our understanding of disease states, such as cancer, diabetes, and coronavirus disease 2019 (COVID-19). Deep learning, a recent advance of artificial intelligence that has been used to address many problems involving large datasets, has also emerged as a promising tool for scRNA-seq data analysis, as it has a capacity to extract informative and compact features from noisy, heterogeneous, and high-dimensional scRNA-seq data to improve downstream analysis. The present review aims at surveying recently developed deep learning techniques in scRNA-seq data analysis, identifying key steps within the scRNA-seq data analysis pipeline that have been advanced by deep learning, and explaining the benefits of deep learning over more conventional analytic tools. Finally, we summarize the challenges in current deep learning approaches faced within scRNA-seq data and discuss potential directions for improvements in deep learning algorithms for scRNA-seq data analysis.


Subject(s)
COVID-19 , Deep Learning , Humans , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Artificial Intelligence , Single-Cell Analysis/methods , Cluster Analysis
10.
BMC Neurol ; 22(1): 139, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-2268723

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored the function of the key candidate gene. METHODS: Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma samples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for survival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genomics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis. RESULTS: GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identified as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3. CONCLUSION: FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new approach for GBM treatment.


Subject(s)
Glioblastoma , Biomarkers, Tumor , Chloride Channels/genetics , Computational Biology/methods , DNA-Binding Proteins/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Prognosis , Transcription Factors/genetics , Tumor Microenvironment
11.
Immunol Rev ; 309(1): 97-122, 2022 08.
Article in English | MEDLINE | ID: covidwho-2223362

ABSTRACT

Tuberculosis (TB) in humans is caused by Mycobacterium tuberculosis (Mtb). It is estimated that 70 million children (<15 years) are currently infected with Mtb, with 1.2 million each year progressing to disease. Of these, a quarter die. The risk of progression from Mtb infection to disease and from disease to death is dependent on multiple pathogen and host factors. Age is a central component in all these transitions. The natural history of TB in children and adolescents is different to adults, leading to unique challenges in the development of diagnostics, therapeutics, and vaccines. The quantification of RNA transcripts in specific cells or in the peripheral blood, using high-throughput methods, such as microarray analysis or RNA-Sequencing, can shed light into the host immune response to Mtb during infection and disease, as well as understanding treatment response, disease severity, and vaccination, in a global hypothesis-free manner. Additionally, gene expression profiling can be used for biomarker discovery, to diagnose disease, predict future disease progression and to monitor response to treatment. Here, we review the role of transcriptomics in children and adolescents, focused mainly on work done in blood, to understand disease biology, and to discriminate disease states to assist clinical decision-making. In recent years, studies with a specific pediatric and adolescent focus have identified blood gene expression markers with diagnostic or prognostic potential that meet or exceed the current sensitivity and specificity targets for diagnostic tools. Diagnostic and prognostic gene expression signatures identified through high-throughput methods are currently being translated into diagnostic tests.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adolescent , Adult , Child , Gene Expression Profiling/methods , Humans , RNA , Transcriptome , Tuberculosis/diagnosis , Tuberculosis/genetics , Tuberculosis/therapy
12.
Virus Res ; 326: 199053, 2023 03.
Article in English | MEDLINE | ID: covidwho-2211635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute viral disease with millions of cases worldwide. Although the number of daily new cases and deaths has been dropping, there is still a need for therapeutic alternatives to deal with severe cases. A promising strategy to prospect new therapeutic candidates is to investigate the regulatory mechanisms involved in COVID-19 progression using integrated transcriptomics approaches. In this work, we aimed to identify COVID-19 Master Regulators (MRs) using a series of publicly available gene expression datasets of lung tissue from patients which developed the severe form of the disease. We were able to identify a set of six potential COVID-19 MRs related to its severe form, namely TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2. In addition, using the Connectivity Map drug repositioning approach, we identified 52 different drugs which could be used to revert the disease signature, thus being candidates for the design of novel clinical treatments. Furthermore, we compared the identified signature and drugs with the ones obtained from the analysis of nasopharyngeal swab samples from infected patients and preclinical cell models. This comparison showed significant similarities between them, although also revealing some limitations on the overlap between clinical and preclinical data in COVID-19, highlighting the need for careful selection of the best model for each disease stage.


Subject(s)
COVID-19 , Humans , Drug Repositioning/methods , Gene Expression Profiling/methods , Lung , TEA Domain Transcription Factors , Transcription Factors/genetics
13.
Nat Methods ; 20(2): 304-315, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185967

ABSTRACT

The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.


Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Gene Expression Profiling/methods , Transcriptome , Lung , Single-Cell Analysis/methods
14.
Front Immunol ; 13: 975848, 2022.
Article in English | MEDLINE | ID: covidwho-2142004

ABSTRACT

Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.


Subject(s)
COVID-19 , Sepsis , Biomarkers , Computational Biology/methods , Critical Illness , Cytokines/genetics , Emetine , Gene Expression Profiling/methods , Humans , Molecular Docking Simulation , NF-kappa B/genetics , Progesterone , Receptors, Cytokine/genetics , SARS-CoV-2 , Sepsis/genetics , Sepsis/metabolism
15.
Front Immunol ; 13: 1008653, 2022.
Article in English | MEDLINE | ID: covidwho-2119881

ABSTRACT

Background: The severe coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in the most devastating pandemic in modern history. Human immunodeficiency virus (HIV) destroys immune system cells and weakens the body's ability to resist daily infections and diseases. Furthermore, HIV-infected individuals had double COVID-19 mortality risk and experienced worse COVID-related outcomes. However, the existing research still lacks the understanding of the molecular mechanism underlying crosstalk between COVID-19 and HIV. The aim of our work was to illustrate blood transcriptome crosstalk between COVID-19 and HIV and to provide potential drugs that might be useful for the treatment of HIV-infected COVID-19 patients. Methods: COVID-19 datasets (GSE171110 and GSE152418) were downloaded from Gene Expression Omnibus (GEO) database, including 54 whole-blood samples and 33 peripheral blood mononuclear cells samples, respectively. HIV dataset (GSE37250) was also obtained from GEO database, containing 537 whole-blood samples. Next, the "Deseq2" package was used to identify differentially expressed genes (DEGs) between COVID-19 datasets (GSE171110 and GSE152418) and the "limma" package was utilized to identify DEGs between HIV dataset (GSE37250). By intersecting these two DEG sets, we generated common DEGs for further analysis, containing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional enrichment analysis, protein-protein interaction (PPI) analysis, transcription factor (TF) candidate identification, microRNAs (miRNAs) candidate identification and drug candidate identification. Results: In this study, a total of 3213 DEGs were identified from the merged COVID-19 dataset (GSE171110 and GSE152418), and 1718 DEGs were obtained from GSE37250 dataset. Then, we identified 394 common DEGs from the intersection of the DEGs in COVID-19 and HIV datasets. GO and KEGG enrichment analysis indicated that common DEGs were mainly gathered in chromosome-related and cell cycle-related signal pathways. Top ten hub genes (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5, RRM2) were ranked according to their scores, which were screened out using degree algorithm on the basis of common DEGs. Moreover, top ten drug candidates (LUCANTHONE, Dasatinib, etoposide, Enterolactone, troglitazone, testosterone, estradiol, calcitriol, resveratrol, tetradioxin) ranked by their P values were screened out, which maybe be beneficial for the treatment of HIV-infected COVID-19 patients. Conclusion: In this study, we provide potential molecular targets, signaling pathways, small molecular compounds, and promising biomarkers that contribute to worse COVID-19 prognosis in patients with HIV, which might contribute to precise diagnosis and treatment for HIV-infected COVID-19 patients.


Subject(s)
COVID-19 , HIV Infections , Humans , Transcriptome , COVID-19/genetics , Leukocytes, Mononuclear , Computational Biology/methods , SARS-CoV-2 , Gene Expression Profiling/methods , HIV Infections/drug therapy , HIV Infections/genetics
16.
J Vis Exp ; (188)2022 10 21.
Article in English | MEDLINE | ID: covidwho-2110320

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs that are formed via back-splicing. These circRNAs are predominantly studied for their roles as regulators of various biological processes. Notably, emerging evidence demonstrates that host circRNAs can be differentially expressed (DE) upon infection with pathogens (e.g., influenza and coronaviruses), suggesting a role for circRNAs in regulating host innate immune responses. However, investigations on the role of circRNAs during pathogenic infections are limited by the knowledge and skills required to carry out the necessary bioinformatic analysis to identify DE circRNAs from RNA sequencing (RNA-seq) data. Bioinformatics prediction and identification of circRNAs is crucial before any verification, and functional studies using costly and time-consuming wet-lab techniques. To solve this issue, a step-by-step protocol of in silico prediction and characterization of circRNAs using RNA-seq data is provided in this manuscript. The protocol can be divided into four steps: 1) Prediction and quantification of DE circRNAs via the CIRIquant pipeline; 2) Annotation via circBase and characterization of DE circRNAs; 3) CircRNA-miRNA interaction prediction through Circr pipeline; 4) functional enrichment analysis of circRNA parental genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). This pipeline will be useful in driving future in vitro and in vivo research to further unravel the role of circRNAs in host-pathogen interactions.


Subject(s)
MicroRNAs , RNA, Circular , RNA, Circular/genetics , Sequence Analysis, RNA , MicroRNAs/genetics , Computational Biology/methods , Host-Pathogen Interactions/genetics , Gene Expression Profiling/methods
17.
Brief Bioinform ; 23(6)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2087743

ABSTRACT

Gene-based transcriptome analysis, such as differential expression analysis, can identify the key factors causing disease production, cell differentiation and other biological processes. However, this is not enough because basic life activities are mainly driven by the interactions between genes. Although there have been already many differential network inference methods for identifying the differential gene interactions, currently, most studies still only use the information of nodes in the network for downstream analyses. To investigate the insight into differential gene interactions, we should perform interaction-based transcriptome analysis (IBTA) instead of gene-based analysis after obtaining the differential networks. In this paper, we illustrated a workflow of IBTA by developing a Co-hub Differential Network inference (CDN) algorithm, and a novel interaction-based metric, pivot APC2. We confirmed the superior performance of CDN through simulation experiments compared with other popular differential network inference algorithms. Furthermore, three case studies are given using colorectal cancer, COVID-19 and triple-negative breast cancer datasets to demonstrate the ability of our interaction-based analytical process to uncover causative mechanisms.


Subject(s)
COVID-19 , Gene Regulatory Networks , Humans , Gene Expression Profiling/methods , Transcriptome , Algorithms
18.
BMC Genomics ; 23(1): 654, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2038658

ABSTRACT

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data; however some important differences do exist. In this manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139-140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).


Subject(s)
Bacteriophages , Antibodies , Bacteriophages/genetics , Bayes Theorem , Epitopes , Gene Expression Profiling/methods , Immunoprecipitation , Sequence Analysis, RNA/methods
19.
J Cell Mol Med ; 26(14): 4101-4112, 2022 07.
Article in English | MEDLINE | ID: covidwho-1985997

ABSTRACT

The relationship between autophagy and immunity has been well studied. However, little is known about the role of autophagy in the immune microenvironment during the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to uncover the effect of autophagy on the immune microenvironment in the context of DCM. By investigating the autophagy gene expression differences between healthy donors and DCM samples, 23 dysregulated autophagy genes were identified. Using a series of bioinformatics methods, 13 DCM-related autophagy genes were screened and used to construct a risk prediction model, which can well distinguish DCM and healthy samples. Then, the connections between autophagy and immune responses including infiltrated immunocytes, immune reaction gene-sets and human leukocyte antigen (HLA) genes were systematically evaluated. In addition, two autophagy-mediated expression patterns in DCM were determined via the unsupervised consensus clustering analysis, and the immune characteristics of different patterns were revealed. In conclusion, our study revealed the strong effect of autophagy on the DCM immune microenvironment and provided new insights to understand the pathogenesis and treatment of DCM.


Subject(s)
Cardiomyopathy, Dilated , Autophagy/genetics , Cardiomyopathy, Dilated/metabolism , Computational Biology , Gene Expression Profiling/methods , Humans
20.
PLoS One ; 17(6): e0269386, 2022.
Article in English | MEDLINE | ID: covidwho-1910661

ABSTRACT

BACKGROUND: There is growing evidence of a strong relationship between COVID-19 and myocarditis. However, there are few bioinformatics-based analyses of critical genes and the mechanisms related to COVID-19 Myocarditis. This study aimed to identify critical genes related to COVID-19 Myocarditis by bioinformatic methods, explore the biological mechanisms and gene regulatory networks, and probe related drugs. METHODS: The gene expression data of GSE150392 and GSE167028 were obtained from the Gene Expression Omnibus (GEO), including cardiomyocytes derived from human induced pluripotent stem cells infected with SARS-CoV-2 in vitro and GSE150392 from patients with myocarditis infected with SARS-CoV-2 and the GSE167028 gene expression dataset. Differentially expressed genes (DEGs) (adjusted P-Value <0.01 and |Log2 Fold Change| ≥2) in GSE150392 were assessed by NetworkAnalyst 3.0. Meanwhile, significant modular genes in GSE167028 were identified by weighted gene correlation network analysis (WGCNA) and overlapped with DEGs to obtain common genes. Functional enrichment analyses were performed by using the "clusterProfiler" package in the R software, and protein-protein interaction (PPI) networks were constructed on the STRING website (https://cn.string-db.org/). Critical genes were identified by the CytoHubba plugin of Cytoscape by 5 algorithms. Transcription factor-gene (TF-gene) and Transcription factor-microRibonucleic acid (TF-miRNA) coregulatory networks construction were performed by NetworkAnalyst 3.0 and displayed in Cytoscape. Finally, Drug Signatures Database (DSigDB) was used to probe drugs associated with COVID-19 Myocarditis. RESULTS: Totally 850 DEGs (including 449 up-regulated and 401 down-regulated genes) and 159 significant genes in turquoise modules were identified from GSE150392 and GSE167028, respectively. Functional enrichment analysis indicated that common genes were mainly enriched in biological processes such as cell cycle and ubiquitin-protein hydrolysis. 6 genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified as critical genes. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Etoposide, Methotrexate, Troglitazone, etc) were considered as target drugs for COVID-19 Myocarditis. CONCLUSIONS: Through bioinformatics method analysis, this study provides a new perspective to explore the pathogenesis, gene regulatory networks and provide drug compounds as a reference for COVID-19 Myocarditis. It is worth highlighting that critical genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) may be potential biomarkers and treatment targets of COVID-19 Myocarditis for future study.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , MicroRNAs , Myocarditis , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Myocarditis/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL