Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625123

ABSTRACT

SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications-including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)-have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.


Subject(s)
Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19/genetics , Acetaminophen/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Caco-2 Cells , Disease Progression , Enzyme Activation/drug effects , Etoricoxib/pharmacology , Flurbiprofen/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Humans , Ibuprofen/pharmacology , Male , Mice , Mice, Inbred C57BL , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Internalization/drug effects
2.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Article in English | MEDLINE | ID: covidwho-1527886

ABSTRACT

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Gene Expression Regulation, Enzymologic , Receptors, Virus/biosynthesis , SARS-CoV-2/physiology , Sex Characteristics , Aging/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Susceptibility , Female , Heart/virology , Humans , Intestine, Small/enzymology , Intestine, Small/virology , Kidney/enzymology , Kidney/virology , Lung/enzymology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/enzymology , Organ Specificity , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Young Adult
3.
J Cancer Res Clin Oncol ; 148(3): 599-608, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1527467

ABSTRACT

INTRODUCTION: Cathepsin L (CTSL) is a kind of the SARS-entry-associated CoV-2's proteases, which plays a key role in the virus's entry into the cell and subsequent infection. We investigated the association between the expression level of CTSL and overall survival in Glioblastoma multiforme (GBM) patients, to better understand the possible route and risks of new coronavirus infection for patients with GBM. METHODS: The expression level of CTSL in GBM was analyzed using TCGA and CGGA databases. The relationship between CTSL and immune infiltration levels was analyzed by means of the TIMER database. The impact of CTSL inhibitors on GBM biological activity was tested. RESULTS: The findings revealed that GBM tissues had higher CTSL expression levels than that of normal brain tissues, which was associated with a significantly lower survival rate in GBM patients. Meanwhile, the expression level of CTSL negatively correlated with purity, B cell and CD8+ T cell in GBM. CTSL inhibitor significantly reduced growth and induced mitochondrial apoptosis. CONCLUSION: According to the findings, CTSL acts as an independent prognostic factor and can be considered as promising therapeutic target for GBM.


Subject(s)
Biomarkers, Tumor/metabolism , COVID-19/pathology , Cathepsin L/metabolism , Dipeptides/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/pathology , Apoptosis , COVID-19/drug therapy , COVID-19/enzymology , COVID-19/virology , Case-Control Studies , Cell Proliferation , Female , Glioblastoma/drug therapy , Glioblastoma/enzymology , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2/physiology , Survival Rate , Tumor Cells, Cultured
4.
Physiol Rev ; 101(4): 1457-1486, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1443666

ABSTRACT

This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti-viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , COVID-19/metabolism , Membrane Glycoproteins/metabolism , SARS-CoV-2 , ADP-ribosyl Cyclase 1/genetics , COVID-19/pathology , COVID-19/virology , Gene Expression Regulation, Enzymologic , Humans , Membrane Glycoproteins/genetics
5.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Article in English | MEDLINE | ID: covidwho-1432756

ABSTRACT

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19 , Gene Expression Regulation, Enzymologic , SARS-CoV-2/metabolism , Stem Cells , Taste Buds , COVID-19/enzymology , COVID-19/pathology , COVID-19/virology , Female , Humans , Male , Stem Cells/enzymology , Stem Cells/pathology , Stem Cells/virology , Taste Buds/enzymology , Taste Buds/pathology , Taste Buds/virology
6.
Physiol Rev ; 102(1): 339-341, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1398740

ABSTRACT

During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline). The worldwide spread of SARS-CoV-2 virus revealed specific susceptibilities to the virus among the elderly and individuals with age-related syndromes. These populations were more likely to experience a hyperimmune response characterized by a treatment-resistant acute lung pathology accompanied by multiple organ failure. These observations underscore the interplay between the virus, the biology of aging, and outcomes observed in the most severe cases of SARS-CoV-2 infection. The ectoenzyme CD38 has been implicated in the process of "inflammaging" in aged tissues. In a current publication, Horenstein et al. present evidence to support the hypothesis that CD38 plays a central role in altered immunometabolism resulting from COVID-19 infection. The authors discuss a critical but underappreciated trifecta of CD38-mediated NAD+ metabolism, aging, and COVID-19 immune response and speculate that the CD38/NAD+ axis is a promising therapeutic target for this disease.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , COVID-19/physiopathology , Membrane Glycoproteins/metabolism , SARS-CoV-2 , ADP-ribosyl Cyclase 1/genetics , Aging , Gene Expression Regulation, Enzymologic , Humans , Membrane Glycoproteins/genetics , NAD/metabolism
8.
PLoS One ; 16(8): e0256141, 2021.
Article in English | MEDLINE | ID: covidwho-1362089

ABSTRACT

SARS-CoV-2 requires serine protease, transmembrane serine protease 2 (TMPRSS2), and cysteine proteases, cathepsins B, L (CTSB/L) for entry into host cells. These host proteases activate the spike protein and enable SARS-CoV-2 entry. We herein performed genomic-guided gene set enrichment analysis (GSEA) to identify upstream regulatory elements altering the expression of TMPRSS2 and CTSB/L. Further, medicinal compounds were identified based on their effects on gene expression signatures of the modulators of TMPRSS2 and CTSB/L genes. Using this strategy, estradiol and retinoic acid have been identified as putative SARS-CoV-2 alleviation agents. Next, we analyzed drug-gene and gene-gene interaction networks using 809 human targets of SARS-CoV-2 proteins. The network results indicate that estradiol interacts with 370 (45%) and retinoic acid interacts with 251 (31%) human proteins. Interestingly, a combination of estradiol and retinoic acid interacts with 461 (56%) of human proteins, indicating the therapeutic benefits of drug combination therapy. Finally, molecular docking analysis suggests that both the drugs bind to TMPRSS2 and CTSL with the nanomolar to low micromolar affinity. The results suggest that these drugs can simultaneously target both the entry pathways of SARS-CoV-2 and thus can be considered as a potential treatment option for COVID-19.


Subject(s)
Cathepsin B/genetics , Cathepsin L/genetics , Estradiol/pharmacology , Genomics/methods , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Tretinoin/pharmacology , Cathepsin B/chemistry , Cathepsin L/chemistry , Databases, Genetic , Gene Expression Regulation, Enzymologic/drug effects , Gene Regulatory Networks/drug effects , Host-Pathogen Interactions , Humans , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects
9.
Adv Biol Regul ; 81: 100820, 2021 08.
Article in English | MEDLINE | ID: covidwho-1351735

ABSTRACT

The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several "converging" evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1-7 and Ang 1-9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.


Subject(s)
ADAM17 Protein/biosynthesis , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , ADAM17 Protein/antagonists & inhibitors , Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19/drug therapy , Gene Expression Regulation, Enzymologic , Humans , Peptide Fragments/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Up-Regulation
10.
FASEB J ; 35(8): e21774, 2021 08.
Article in English | MEDLINE | ID: covidwho-1331587

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID-19 are yet to be devised. It is crucial that antivirals that interfere with the SARS-CoV-2 life cycle be identified and developed. 3-Chymotrypsin-like protease (3CLpro) is an attractive antiviral drug target against SARS-CoV-2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro-catalyzed reaction. While DMSO (5%-20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide-binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID-19.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , Dimethyl Sulfoxide/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Viral/drug effects , SARS-CoV-2/enzymology , Computer Simulation , Coronavirus 3C Proteases/genetics , Humans , Microfluidic Analytical Techniques , Peptides/metabolism , Protein Stability
11.
Am J Pathol ; 191(9): 1610-1623, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316372

ABSTRACT

Despite occasional reports of vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during pregnancy, the question of placental infection and its consequences for the newborn remain unanswered. Herein, we analyzed the placentas of 31 coronavirus disease 2019-positive mothers by reverse transcriptase PCR, immunohistochemistry, and in situ hybridization. Only one case of placental infection was detected, which was associated with intrauterine demise of the fetus. Differentiated primary trophoblasts were then isolated from nonpathologic human placentas at term, differentiated, and exposed to SARS-CoV-2 virions. Unlike for positive control cells Vero E6, the virus inside cytotrophoblasts and syncytiotrophoblasts or in the supernatant 4 days after infection was undetectable. As a mechanism of defense, we hypothesized that trophoblasts at term do not express angiotensin-converting enzyme 2 and transmembrane protease serine 2 (TMPRSS2), the two main host membrane receptors for SARS-CoV-2 entry. The quantification of these proteins in the placenta during pregnancy confirmed the absence of TMPRSS2 at the surface of the syncytium. Surprisingly, a transiently induced experimental expression of TMPRSS2 did not allow the entry or replication of the virus in differentiated trophoblasts. Altogether, these results underline that trophoblasts are not likely to be infected by SARS-CoV-2 at term, but raise concern about preterm infection.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19 , Gene Expression Regulation, Enzymologic , Placenta Diseases , Pregnancy Complications, Infectious , SARS-CoV-2/metabolism , Serine Endopeptidases/biosynthesis , Trophoblasts , Virus Internalization , Adult , COVID-19/enzymology , COVID-19/pathology , Female , Humans , Placenta Diseases/enzymology , Placenta Diseases/pathology , Pregnancy , Pregnancy Complications, Infectious/enzymology , Pregnancy Complications, Infectious/pathology , Trophoblasts/enzymology , Trophoblasts/pathology
12.
J Virol ; 95(15): e0032721, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1305507

ABSTRACT

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/metabolism , Down-Regulation , Gene Expression Regulation, Enzymologic , Neoplasm Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Caco-2 Cells , Cathepsin L/biosynthesis , Cathepsin L/genetics , Chlorocebus aethiops , Humans , Neoplasm Proteins/genetics , Renin-Angiotensin System , SARS-CoV-2/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Vero Cells
13.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Article in English | MEDLINE | ID: covidwho-1298622

ABSTRACT

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19 , Gene Expression Regulation, Enzymologic , SARS-CoV-2/metabolism , Stem Cells , Taste Buds , COVID-19/enzymology , COVID-19/pathology , COVID-19/virology , Female , Humans , Male , Stem Cells/enzymology , Stem Cells/pathology , Stem Cells/virology , Taste Buds/enzymology , Taste Buds/pathology , Taste Buds/virology
14.
Aging (Albany NY) ; 13(13): 16904-16921, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1298261

ABSTRACT

Abnormal ATPase H+ Transporting Accessory Protein 1 (ATP6AP1) expression may promote carcinogenesis. We investigated the association of ATP6AP1 with breast cancer (BC) and COVID-19. The Oncomine, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Kaplan-Meier plotter databases were used to evaluate the expression and prognostic value of ATP6AP1 in BC. ATP6AP1 was upregulated in BC tissues, and higher ATP6AP1 expression was associated with poorer outcomes. Data from the Tumor Immune Estimation Resource, Tumor-Immune System Interaction Database and Kaplan-Meier plotter indicated that ATP6AP1 expression correlated with immune infiltration, and that its prognostic effects in BC depended on tumor-infiltrating immune cell subtype levels. Multiple databases were used to evaluate the association of ATP6AP1 with clinicopathological factors, assess the mutation and methylation of ATP6AP1, and analyze gene co-expression and enrichment. The ATP6AP1 promoter was hypomethylated in BC tissues and differentially methylated between different disease stages and subtypes. Data from the Gene Expression Omnibus indicated that ATP6AP1 levels in certain cell types were reduced after SARS-CoV-2 infections. Ultimately, higher ATP6AP1 expression was associated with a poorer prognosis and with higher or lower infiltration of particular immune cells in BC. BC patients may be particularly susceptible to SARS-CoV-2 infections, which may alter their prognoses.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/genetics , COVID-19/genetics , Vacuolar Proton-Translocating ATPases/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/immunology , COVID-19/diagnostic imaging , COVID-19/immunology , DNA Methylation , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Mutation/genetics , Predictive Value of Tests , Prognosis , Survival Analysis , Treatment Outcome , Vacuolar Proton-Translocating ATPases/analysis , Vacuolar Proton-Translocating ATPases/immunology
16.
Genes (Basel) ; 12(7)2021 07 05.
Article in English | MEDLINE | ID: covidwho-1295803

ABSTRACT

The virus responsible for the COVID-19 global health crisis, SARS-CoV-2, has been shown to utilize the ACE2 protein as an entry point to its target cells. The virus has been shown to rely on the actions of TMPRSS2 (a serine protease), as well as FURIN (a peptidase), for the critical priming of its spike protein. It has been postulated that variations in the sequence and expression of SARS-CoV-2's receptor (ACE2) and the two priming proteases (TMPRSS2 and FURIN) may be critical in contributing to SARS-CoV-2 infectivity. This study aims to examine the different expression levels of FURIN in various tissues and age ranges in light of ACE2 and TMPRSS2 expression levels using the LungMAP database. Furthermore, we retrieved expression quantitative trait loci (eQTLs) of the three genes and their annotation. We analyzed the frequency of the retrieved variants in data from various populations and compared it to the Egyptian population. We highlight FURIN's potential interplay with the immune response to SARS-CoV-2 and showcase a myriad of variants of the three genes that are differentially expressed across populations. Our findings provide insights into potential genetic factors that impact SARS-CoV-2 infectivity in different populations and shed light on the varying expression patterns of FURIN.


Subject(s)
Alleles , Angiotensin-Converting Enzyme 2 , COVID-19 , Databases, Nucleic Acid , Furin , Gene Expression Regulation, Enzymologic , Gene Frequency , Genetic Predisposition to Disease , SARS-CoV-2/metabolism , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , COVID-19/enzymology , COVID-19/genetics , Computational Biology , Female , Furin/biosynthesis , Furin/genetics , Humans , Male , SARS-CoV-2/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics
18.
Invest Ophthalmol Vis Sci ; 62(7): 25, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1280514

ABSTRACT

Purpose: The ocular surface is considered an important route for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. The expression level of the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is vital for viral infection. However, the regulation of ACE2 expression on the ocular surface is still unknown. We aimed to determine the change in ACE2 expression in inflamed corneal epithelium and explore potential drugs to reduce the expression of ACE2 on the ocular surface. Methods: The expression of the SARS-CoV-2 receptors ACE2 and TMPRSS2 in human corneal epithelial cells (HCECs) was examined by qPCR and Western blotting. The altered expression of ACE2 in inflammatory corneal epithelium was evaluated in TNFα- and IL-1ß-stimulated HCECs and inflamed mouse corneal epithelium, and the effect of resveratrol on ACE2 expression in HCECs was detected by immunofluorescence and Western blot analysis. Results: ACE2 and TMPRSS2 are expressed on the human corneal epithelial cells. ACE2 expression is upregulated in HCECs by stimulation with TNFα and IL-1ß and inflamed mouse corneas, including dry eye and alkali-burned corneas. In addition, resveratrol attenuates the increased expression of ACE2 induced by TNFα in HCECs. Conclusions: This study demonstrates that ACE2 is highly expressed in HCECs and can be upregulated by stimulation with inflammatory cytokines and inflamed mouse corneal epithelium. Resveratrol may be able to reduce the increased expression of ACE2 on the inflammatory ocular surface. Our work suggests that patients with an inflammatory ocular surface may display higher ACE2 expression, which increases the risk of SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Enzyme Inhibitors/pharmacology , Epithelium, Corneal/enzymology , Gene Expression Regulation, Enzymologic/physiology , Keratitis/enzymology , Resveratrol/pharmacology , SARS-CoV-2/physiology , Adult , Angiotensin-Converting Enzyme 2/metabolism , Animals , Blotting, Western , Cells, Cultured , Epithelium, Corneal/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Humans , Inflammation/drug therapy , Inflammation/enzymology , Interleukin-1beta/pharmacology , Keratitis/drug therapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Virus/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
19.
Physiol Rep ; 9(9): e14854, 2021 05.
Article in English | MEDLINE | ID: covidwho-1229494

ABSTRACT

SARS-CoV-2 uptake by lung epithelial cells is a critical step in the pathogenesis of COVID-19. Viral entry is dependent on the binding of the viral spike protein to the angiotensin converting enzyme II protein (ACE2) on the host cell surface, followed by proteolytic cleavage by a host serine protease such as TMPRSS2. Infection of alveolar epithelial cells (AEC) in the distal lung is a key feature in progression to the acute respiratory distress syndrome (ARDS). We hypothesized that AEC expression of ACE2 is induced by hypoxia. In a murine model of hypoxic stress (12% FiO2), the total lung Ace2 mRNA and protein expression was significantly increased after 24 hours in hypoxia compared to normoxia (21% FiO2). In experiments with primary murine type II AEC, we found that exposure to hypoxia either in vivo (prior to isolation) or in vitro resulted in greatly increased AEC expression of both Ace2 (mRNA and protein) and of Tmprss2. However, when isolated type II AEC were maintained in culture over 5 days, with loss of type II cell characteristics and induction of type I cell features, Ace2 expression was greatly reduced, suggesting that this expression was a feature of only this subset of AEC. Finally, in primary human small airway epithelial cells (SAEC), ACE2 mRNA and protein expression were also induced by hypoxia, as was binding to purified spike protein. Hypoxia-induced increase in ACE2 expression in type II AEC may provide an explanation of the extended temporal course of human patients who develop ARDS in COVID-19.


Subject(s)
Acute Lung Injury/enzymology , Alveolar Epithelial Cells/enzymology , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/enzymology , Gene Expression Regulation, Enzymologic , Hypoxia/enzymology , Acute Lung Injury/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Cells, Cultured , Female , Humans , Hypoxia/genetics , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL