Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Genomics ; 23(1): 389, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1902351

ABSTRACT

BACKGROUND: Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited.  RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS: In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.


Subject(s)
Setaria Plant , Gene Expression Regulation, Plant , Humans , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Setaria Plant/metabolism , Stress, Physiological/genetics
2.
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: covidwho-1892898

ABSTRACT

Broomcorn millet (Panicum miliaceum L.) has great potential in Cd phytoextraction, but its mechanisms are largely unknown. Two contrasting broomcorn millet varieties, 'Ningmi6' (Cd-sensitive variety) and '4452' (Cd-tolerant variety), were investigated through morphological, physiological, and transcriptomic analyses to determine the factors responsible for their differential Cd tolerance and translocation. The Cd-tolerant variety can accumulate more Cd, and its cell wall and vacuole component Cd proportions were higher compared with the Cd-sensitive variety. Under Cd stress, the glutathione content and peroxidase activity of the Cd-tolerant variety were significantly higher than those of the Cd-sensitive variety. Additionally, weighted gene co-expression network analysis (WGCNA) revealed hub modules that were associated with Cd stress and/or variety. Notably, genes involved in these hub modules were significantly enriched for roles in glutathione metabolism, phenylpropanoid biosynthesis, ABC transport, and metal ion transport process. These results suggested that regulation of genes associated with cell wall precipitation and vacuole compartmentalization may increase Cd tolerance and reduce Cd translocation in the Cd-tolerant variety, although it can absorb more Cd. This study provides a foundation for exploring molecular mechanisms of Cd tolerance and transport in broomcorn millet and new insights into improving Cd phytoremediation with this crop through genetic engineering.


Subject(s)
Panicum , Biodegradation, Environmental , Cadmium/toxicity , Gene Expression Profiling , Gene Expression Regulation, Plant , Glutathione/genetics , Panicum/genetics , Stress, Physiological , Transcriptome
3.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: covidwho-1875645

ABSTRACT

Actinidia latifolia is one of the very few kiwifruit genotypes with extremely high ascorbic acid (AsA) content. However, a transcriptome atlas of this species is lacking. The accumulation of AsA during fruit development and ripening and the associated molecular mechanisms are still poorly understood. Herein, dynamic changes in AsA content at six different stages of A. latifolia fruit development and ripening were determined. AsA content of A. latifolia fruit reached 1108.76 ± 35.26 mg 100 g-1 FW at full maturity. A high-quality, full-length (FL) transcriptome of A. latifolia was successfully constructed for the first time using third-generation sequencing technology. The transcriptome comprises 326,926 FL non-chimeric reads, 15,505 coding sequences, 2882 transcription factors, 18,797 simple sequence repeats, 3328 long noncoding RNAs, and 231 alternative splicing events. The genes involved in AsA biosynthesis and recycling pathways were identified and compared with those in different kiwifruit genotypes. The correlation between the AsA content and expression levels of key genes in AsA biosynthesis and recycling pathways was revealed. LncRNAs that participate in AsA-related gene expression regulation were also identified. Gene expression patterns in AsA biosynthesis and metabolism exhibited a trend similar to that of AsA accumulation. Overall, this study paves the way for genetic engineering to develop kiwifruits with super-high AsA content.


Subject(s)
Actinidia , Actinidia/genetics , Actinidia/metabolism , Ascorbic Acid/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Transcriptome
4.
BMC Plant Biol ; 21(1): 600, 2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1591084

ABSTRACT

BACKGROUND: Overuse of chemical fertilizer highly influences grain filling rate and quality of rice grain. Biochar is well known for improving plant growth and grain yield under lower chemical fertilization. Therefore field trials were conducted in the early and late seasons of 2019 at Guangxi University, China to investigate the effects of combined biochar (B) and nitrogen (N) application on rice yield and yield components. There were a total of eight treatments: N1B0, 135 kg N ha- 1+ 0 t B ha- 1; N2B0,180 kg N ha- 1+ 0 t B ha- 1; N1B1,135 kg N ha- 1+ 10 t B ha- 1; N1B2,135kg N ha- 1+ 20 t B ha- 1; N1B3,135 kg N ha- 1+ 30 t B ha- 1; N2B1,180 kg N ha- 1+ 10 t B ha- 1; N2B2,180 kg N ha- 1+ 20 t B ha- 1; and N2B3,180 kg N ha- 1+ 30 t B ha- 1. RESULTS: Biochar application at 30 t ha- 1combined with low N application (135 kg ha- 1) increased the activity of starch-metabolizing enzymes (SMEs) during the early and late seasons compared with treatments without biochar. The grain yield, amylose concentration, and starch content of rice were increased in plots treated with 30 t B ha-1and low N. RT-qPCR analysis showed that biochar addition combined with N fertilizer application increased the expression of AGPS2b, SSS1, GBSS1, and GBSE11b, which increased the activity of SMEs during the grain-filling period. CONCLUSION: Our results suggest that the use of 20 to 30 t B ha- 1coupled with 135 kg N ha- 1 is optimal for improving the grain yield and quality of rice.


Subject(s)
Charcoal/pharmacology , Fertilizers , Nitrogen/pharmacology , Oryza/drug effects , 1,4-alpha-Glucan Branching Enzyme/genetics , 1,4-alpha-Glucan Branching Enzyme/metabolism , Agriculture , Amylose/metabolism , China , Enzyme Activation , Enzymes/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism
5.
J Cell Sci ; 134(19)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1484823

ABSTRACT

Molecular chaperones play an important role during the response to different stresses. Since plants are sessile organisms, they need to be able to adapt quickly to different conditions. To do so, plants possess a complex chaperone machinery, composed of HSP70, HSP90, J proteins and other factors. In this study we characterized DJC31 (also known as TPR16) and DJC62 (also known as TPR15) of Arabidopsis thaliana, two J proteins that additionally carry clamp-type tetratricopeptide repeat domains. Using cell fractionation and split GFP, we could show that both proteins are attached to the cytosolic side of the endoplasmic reticulum membrane. Moreover, an interaction with cytosolic HSP70.1 and HSP90.2 could be shown using bimolecular fluorescence complementation. Knockout of both DJC31 and DJC62 caused severe defects in growth and development, which affected almost all organs. Furthermore, it could be shown that the double mutant is more sensitive to osmotic stress and treatment with abscisic acid, but surprisingly exhibited enhanced tolerance to drought. Taken together, these findings indicate that DJC31 and DJC62 might act as important regulators of chaperone-dependent signaling pathways involved in plant development and stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , HSP90 Heat-Shock Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
6.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: covidwho-1480794

ABSTRACT

Sugar transporters play important or even indispensable roles in sugar translocation among adjacent cells in the plant. They are mainly composed of sucrose-proton symporter SUT family members and SWEET family members. In rice, 5 and 21 members are identified in these transporter families, and some of their physiological functions have been characterized on the basis of gene knockout or knockdown strategies. Existing evidence shows that most SUT members play indispensable roles, while many SWEET members are seemingly not so critical in plant growth and development regarding whether their mutants display an aberrant phenotype or not. Generally, the expressions of SUT and SWEET genes focus on the leaf, stem, and grain that represent the source, transport, and sink organs where carbohydrate production, allocation, and storage take place. Rice SUT and SWEET also play roles in both biotic and abiotic stress responses in addition to plant growth and development. At present, these sugar transporter gene regulation mechanisms are largely unclear. In this review, we compare the expressional profiles of these sugar transporter genes on the basis of chip data and elaborate their research advances. Some suggestions concerning future investigation are also proposed.


Subject(s)
Membrane Transport Proteins/physiology , Oryza/physiology , Plant Proteins/physiology , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Oryza/microbiology , Stress, Physiological/physiology , Sucrose/metabolism , Sugars/metabolism
7.
Theor Appl Genet ; 134(9): 3083-3109, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1453686

ABSTRACT

KEY MESSAGE: Based on the large-scale integration of meta-QTL and Genome-Wide  Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.


Subject(s)
Chromosomes, Plant/genetics , Edible Grain/genetics , Genome, Plant , Genome-Wide Association Study , Plant Proteins/metabolism , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping/methods , Edible Grain/growth & development , Gene Expression Regulation, Plant , Phenotype , Plant Breeding , Plant Proteins/genetics , Triticum/growth & development
8.
Front Immunol ; 12: 673723, 2021.
Article in English | MEDLINE | ID: covidwho-1389183

ABSTRACT

Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.


Subject(s)
COVID-19/prevention & control , Cellular Reprogramming Techniques/methods , Plant Somatic Embryogenesis Techniques/methods , SARS-CoV-2/genetics , COVID-19/pathology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Humans , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Development/genetics , Plant Proteins/metabolism , Plants/embryology , Plants/genetics , Reactive Oxygen Species/metabolism
9.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: covidwho-787100

ABSTRACT

Recent advances in transcriptomics have uncovered lots of novel transcripts in plants. To annotate such transcripts, dissecting their coding potential is a critical step. Computational approaches have been proven fruitful in this task; however, most current tools are designed/optimized for mammals and only a few of them have been tested on a limited number of plant species. In this work, we present NAMS webserver, which contains a novel coding potential classifier, NAMS, specifically optimized for plants. We have evaluated the performance of NAMS using a comprehensive dataset containing more than 3 million transcripts from various plant species, where NAMS demonstrates high accuracy and remarkable performance improvements over state-of-the-art software. Moreover, our webserver also furnishes functional annotations, aiming to provide users informative clues to the functions of their transcripts. Considering that most plant species are poorly characterized, our NAMS webserver could serve as a valuable resource to facilitate the transcriptomic studies. The webserver with testing dataset is freely available at http://sunlab.cpy.cuhk.edu.hk/NAMS/.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Internet , Molecular Sequence Annotation/methods , Plants/genetics , Genetic Code/genetics , Plants/classification , RNA, Messenger/genetics , RNA, Plant/genetics , Reproducibility of Results , Species Specificity , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL