Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Virol ; 96(1): e0151121, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1621995

ABSTRACT

The development of mouse models for coronavirus disease 2019 (COVID-19) has enabled testing of vaccines and therapeutics and defining aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2 Tg) expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 knock-in (KI) mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extrapulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to the WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remain uncertain, we evaluated the impact of the naturally occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2 Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans, as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here, we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Lung/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , Disease Models, Animal , Gene Expression , Gene Knock-In Techniques , Humans , Inflammation , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Viral Load , Virus Replication
2.
J Vis Exp ; (177)2021 11 13.
Article in English | MEDLINE | ID: covidwho-1542845

ABSTRACT

Functional genomics studies of the immune system require genetic manipulations that involve both deletion of target genes and addition of elements to proteins of interest. Identification of gene functions in cell line models is important for gene discovery and exploration of cell-intrinsic mechanisms. However, genetic manipulations of immune cells such as T cells and macrophage cell lines using CRISPR/Cas9-mediated knock-in are difficult because of the low transfection efficiency of these cells, especially in a quiescent state. To modify genes in immune cells, drug-resistance selection and viral vectors are typically used to enrich for cells expressing the CRIPSR/Cas9 system, which inevitably results in undesirable intervention of the cells. In a previous study, we designed dual fluorescent reporters coupled to CRISPR/Cas9 that were transiently expressed after electroporation. This technical solution leads to rapid gene deletion in immune cells; however, gene knock-in in immune cells such as T cells and macrophages without the use of drug-resistance selection or viral vectors is even more challenging. In this article, we show that by using cell sorting to aid selection of cells transiently expressing CRISPR/Cas9 constructs targeting the Rosa26 locus in combination with a donor plasmid, gene knock-in can be achieved in both T cells and macrophages without drug-resistance enrichment. As an example, we show how to express human ACE2, a receptor of SARS-Cov-2, which is responsible for the current Covid-19 pandemic, in RAW264.7 macrophages by performing knock-in experiments. Such gene knock-in cells can be widely used for mechanistic studies.


Subject(s)
COVID-19 , CRISPR-Cas Systems , Cell Line , Gene Knock-In Techniques , Humans , Macrophages , Pandemics , SARS-CoV-2 , T-Lymphocytes
3.
Signal Transduct Target Ther ; 6(1): 389, 2021 11 10.
Article in English | MEDLINE | ID: covidwho-1510582

ABSTRACT

SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Gene Knock-In Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neutralization Tests , Recombinant Fusion Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
4.
Bioessays ; 43(4): e2000315, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384113

ABSTRACT

The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.


Subject(s)
Biosensing Techniques/methods , CRISPR-Cas Systems , Virus Diseases/diagnosis , Virus Diseases/therapy , Viruses/genetics , COVID-19/diagnosis , COVID-19/genetics , COVID-19/therapy , Gene Knock-In Techniques , Genome, Viral , Humans , RNA, Guide/genetics
5.
Nature ; 592(7852): 122-127, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104508

ABSTRACT

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Bronchi/cytology , Bronchi/virology , COVID-19/epidemiology , Cell Line , Cells, Cultured , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Founder Effect , Gene Knock-In Techniques , Genetic Fitness , Humans , Male , Mesocricetus , Mice , Nasal Mucosa/cytology , Nasal Mucosa/virology , Protein Binding , RNA, Viral/analysis , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
6.
Nucleic Acids Res ; 49(7): e40, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1050155

ABSTRACT

Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and they were converted to Ddx1 KO via FLP recombinase. We further established TetFE ESCs, which carried a reverse tetracycline transactivator (rtTA) expression cassette and a tetracycline response element (TRE)-regulated FLPERT2 cassette in the Gt(ROSA26)Sor locus for instant and tightly regulated induction of gene KO. By utilizing TetFE Ddx1F/F ESCs, we isolated highly pure Ddx1F/F and Ddx1-/- ESCs and found that loss of Ddx1 caused rRNA processing defects, thereby activating the ribosome stress-p53 pathway. We also demonstrated cKO of various genes in ESCs and homologous recombination-non-proficient human HT1080 cells. The frequency of cKO clones was remarkably high for both cell types and reached up to 96% when EGFP-positive clones were analyzed. This all-in-one cKO system will be a powerful tool for rapid and precise analyses of gene functions.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Knockout Techniques/methods , RNA, Ribosomal/metabolism , Animals , Cell Line , Embryonic Stem Cells , Fibroblasts , Gene Expression , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , RNA Processing, Post-Transcriptional , Ribosomes/metabolism
7.
Nat Protoc ; 15(12): 3777-3787, 2020 12.
Article in English | MEDLINE | ID: covidwho-892041

ABSTRACT

The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.


Subject(s)
COVID-19/genetics , Disease Models, Animal , Angiotensin-Converting Enzyme 2/genetics , Animals , Base Sequence , Gene Knock-In Techniques , Genetic Engineering , Genetic Loci/genetics , Mice , Mice, Transgenic , Point Mutation
9.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-378130

ABSTRACT

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Disease Models, Animal , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral , Aging , Angiotensin-Converting Enzyme 2 , Animals , Brain/virology , COVID-19 , CRISPR-Cas Systems , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Gene Knock-In Techniques , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/pathology , Nose/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Stomach/virology , Trachea/virology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL