ABSTRACT
Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as in vitro models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV M gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. IMPORTANCE Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.
Subject(s)
Calcium-Binding Proteins , Coronavirus Infections , RNA, Long Noncoding , Swine Diseases , Tight Junctions , Animals , Cell Line , Coronavirus Infections/metabolism , Porcine epidemic diarrhea virus/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Swine Diseases/metabolism , Tight Junctions/genetics , Gene Knockdown Techniques , Organoids , In Vitro Techniques , Calcium-Binding Proteins/metabolism , Protein Binding , ProteolysisABSTRACT
PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.
Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus , Gene Expression Profiling , HSP90 Heat-Shock Proteins/genetics , Immunity/genetics , Swine Diseases/etiology , Transcriptome , Animals , Computational Biology/methods , Disease Susceptibility , Gene Knockdown Techniques , Gene Ontology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , NF-kappa B/metabolism , SwineABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.
Subject(s)
COVID-19 Drug Treatment , Heparin/analogs & derivatives , Cell Line , Cytokines/metabolism , Fenofibrate , Gene Knockdown Techniques , Glucuronidase/genetics , Glucuronidase/metabolism , Heparin/therapeutic use , Humans , Immunity/drug effects , Inflammation , Macrophages/drug effects , Macrophages/immunology , NF-kappa B , SARS-CoV-2ABSTRACT
Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.
Subject(s)
Dexamethasone/pharmacology , Dipeptidases/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation/drug effects , Glutathione/metabolism , Receptors, Glucocorticoid/metabolism , Carbolines/adverse effects , Carbolines/pharmacology , Cell Line , Dipeptidases/metabolism , Fluorescent Antibody Technique , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Knockdown Techniques , Humans , Immunophenotyping , Oxidation-Reduction/drug effects , Piperazines/adverse effects , Piperazines/pharmacologyABSTRACT
Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.
Subject(s)
Autophagy/genetics , CRISPR-Cas Systems , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus ReplicationABSTRACT
Nuclear pore complexes (NPC) regulate molecular traffics on nuclear envelope, which plays crucial roles during cell fate specification and diseases. The viral accessory protein NSP9 of SARS-CoV-2 is reported to interact with nucleoporin 62 (NUP62), a structural component of the NPC, but its biological impact on the host cell remain obscure. Here, we established new cell line models with ectopic NSP9 expression and determined the subcellular destination and biological functions of NSP9. Confocal imaging identified NSP9 to be largely localized in close proximity to the endoplasmic reticulum. In agreement with the subcellular distribution of NSP9, association of NSP9 with NUP62 was observed in cytoplasm. Furthermore, the overexpression of NSP9 correlated with a reduction of NUP62 expression on the nuclear envelope, suggesting that attenuating NUP62 expression might have contributed to defective NPC formation. Importantly, the loss of NUP62 impaired translocation of p65, a subunit of NF-κB, upon TNF-α stimulation. Concordantly, NSP9 over-expression blocked p65 nuclear transport. Taken together, these data shed light on the molecular mechanisms underlying the modulation of host cells during SARS-CoV-2 infection.
Subject(s)
COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/physiology , Membrane Glycoproteins/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Active Transport, Cell Nucleus , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Gene Knockdown Techniques , HeLa Cells , Humans , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Models, Biological , Nuclear Envelope/metabolism , Nuclear Envelope/virology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Nuclear Pore Complex Proteins/genetics , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factor RelA/metabolism , Viral Nonstructural Proteins/geneticsABSTRACT
Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.
Subject(s)
COVID-19/immunology , Cytokines/metabolism , Inflammation/immunology , Macrophages/immunology , SARS-CoV-2/physiology , Ubiquitins/metabolism , Cell Differentiation , Coronavirus Papain-Like Proteases/metabolism , Cytokines/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Influenza A virus/physiology , Influenza, Human/immunology , Pluripotent Stem Cells/cytology , Ubiquitination , Ubiquitins/genetics , Zika Virus/physiology , Zika Virus Infection/immunologyABSTRACT
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 is a virus-induced inflammatory disease of the airways and lungs that leads to severe multi-organ damage and death. Here we show that cellular lipid synthesis is required for SARS-CoV-2 replication and offers an opportunity for pharmacological intervention. Screening a short-hairpin RNA sublibrary that targets metabolic genes, we identified genes that either inhibit or promote SARS-CoV-2 viral infection, including two key candidate genes, ACACA and FASN, which operate in the same lipid synthesis pathway. We further screened and identified several potent inhibitors of fatty acid synthase (encoded by FASN), including the US Food and Drug Administration-approved anti-obesity drug orlistat, and found that it inhibits in vitro replication of SARS-CoV-2 variants, including more contagious new variants, such as Delta. In a mouse model of SARS-CoV-2 infection (K18-hACE2 transgenic mice), injections of orlistat resulted in lower SARS-CoV-2 viral levels in the lung, reduced lung pathology and increased mouse survival. Our findings identify fatty acid synthase inhibitors as drug candidates for the prevention and treatment of COVID-19 by inhibiting SARS-CoV-2 replication. Clinical trials are needed to evaluate the efficacy of repurposing fatty acid synthase inhibitors for severe COVID-19 in humans.
Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Fatty Acids/biosynthesis , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , COVID-19/mortality , Cell Line , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Drug , Drug Development , Gene Knockdown Techniques , Host-Pathogen Interactions/genetics , Humans , Lipid Metabolism/drug effects , Mice , fas Receptor/antagonists & inhibitors , fas Receptor/deficiency , fas Receptor/metabolism , COVID-19 Drug TreatmentABSTRACT
BACKGROUND: Aedes albopictus is the primary vector of dengue fever in China. This mosquito species has a wide distribution range in China and can be found in the tropical climate zones of southern provinces through to temperate climate zones of northern provinces. Insecticides are an important control method, especially during outbreaks of dengue fever, but increasing insecticide resistance raises the risk of failure to control vector-borne diseases. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a key mechanism that confers resistance to pyrethroids. In this study we explored the characteristics and possible evolutionary trend of kdr mutation in Ae. albopictus based on analysis of the kdr mutations in field populations of mosquitoes in China. METHODS: A total of 1549 adult Ae. albopictus were collected from 18 sites in China from 2017 to 2019 and 50 individuals from three sites in the 1990s. A fragment of approximately 350 bp from part of the S6 segment in the VGSC gene domain III was amplified and sequenced. Using TCS software version 1.21A, we constructed haplotypes of the VGSC gene network and calculated outgroup probability of the haplotypes. Data of annual average temperatures (AAT) of the collection sites were acquired from the national database. The correlation between AAT of the collection site and the kdr mutation rate was analyzed by Pearson correlation using SPSS software version 21.0. RESULTS: The overall frequency of mutant allele F1534 was 45.6%. Nine mutant alleles were detected at codon 1534 in 15 field populations, namely TCC/TCG (S) (38.9%), TTG/CTG/CTC/TTA (L) (3.7%), TGC (C) (2.9%), CGC (R) (0.3%) and TGG (W) (0.1%). Only one mutant allele, ACC (T), was found at codon 1532, with a frequency of 6.4% in ten field populations. Moreover, multiple mutations at alleles I1532 and F1534 in a sample appeared in five populations. The 1534 mutation rate was significantly positively related to AAT (Pearson correlation: r(18) = 0.624, P = 0.0056), while the 1532 mutation rate was significantly negatively related to AAT (Pearson correlation: r(18) = - 0.645, P = 0.0038). Thirteen haplotypes were inferred, in which six mutant haplotypes were formed by one step, and one additional mutation formed the other six haplotypes. In the samples from the 1990s, no mutant allele was detected at codon 1532 of the VGSC gene. However, F1534S/TCC was found in HNHK94 with an unexpected frequency of 100%. CONCLUSIONS: Kdr mutations are widespread in the field populations of Ae. albopictus in China. Two novel mutant alleles, F1534W/TGG and F1534R/CGC, were detected in this study. The 1534 kdr mutation appeared in the population of Ae. albopictus no later than the 1990s. The F1534 mutation rate was positively correlated with AAT, while the I1532 mutation rate was negatively correlated with AAT. These results indicate that iInsecticide usage should be carefully managed to slow down the spread of highly resistant Ae. albopictus populations, especially in the areas with higher AAT.
Subject(s)
Aedes/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Mutation , Temperature , Voltage-Gated Sodium Channels/genetics , Aedes/drug effects , Alleles , Animals , China , Gene Knockdown Techniques , Insecticides/pharmacologyABSTRACT
FOXP3+ regulatory T cells (Tregs) are central for maintaining peripheral tolerance and immune homeostasis. Because of their immunosuppressive characteristics, Tregs are a potential therapeutic target in various diseases such as autoimmunity, transplantation and infectious diseases like COVID-19. Numerous studies are currently exploring the potential of adoptive Treg therapy in different disease settings and novel genome editing techniques like CRISPR/Cas will likely widen possibilities to strengthen its efficacy. However, robust and expeditious protocols for genome editing of human Tregs are limited. Here, we describe a rapid and effective protocol for reaching high genome editing efficiencies in human Tregs without compromising cell integrity, suitable for potential therapeutic applications. By deletion of IL2RA encoding for IL-2 receptor α-chain (CD25) in Tregs, we demonstrated the applicability of the method for downstream functional assays and highlighted the importance for CD25 for in vitro suppressive function of human Tregs. Moreover, deletion of IL6RA (CD126) in human Tregs elicits cytokine unresponsiveness and thus may prevent IL-6-mediated instability of Tregs, making it an attractive target to potentially boost functionality in settings of adoptive Treg therapies to contain overreaching inflammation or autoimmunity. Thus, our rapid and efficient protocol for genome editing in human Tregs may advance possibilities for Treg-based cellular therapies.
Subject(s)
Gene Editing/methods , Interleukin-2 Receptor alpha Subunit/genetics , Receptors, Interleukin-6/genetics , T-Lymphocytes, Regulatory/metabolism , Blood Buffy Coat/cytology , CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Gene Knockdown Techniques , HEK293 Cells , Healthy Volunteers , Humans , Immunotherapy, Adoptive/methods , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , Time FactorsABSTRACT
Since understanding molecular mechanisms of SARS-CoV-2 infection is extremely important for developing effective therapies against COVID-19, we focused on the internalization mechanism of SARS-CoV-2 via ACE2. Although cigarette smoke is generally believed to be harmful to the pathogenesis of COVID-19, cigarette smoke extract (CSE) treatments were surprisingly found to suppress the expression of ACE2 in HepG2 cells. We thus tried to clarify the mechanism of CSE effects on expression of ACE2 in mammalian cells. Because RNA-seq analysis suggested that suppressive effects on ACE2 might be inversely correlated with induction of the genes regulated by aryl hydrocarbon receptor (AHR), the AHR agonists 6-formylindolo(3,2-b)carbazole (FICZ) and omeprazole (OMP) were tested to assess whether those treatments affected ACE2 expression. Both FICZ and OMP clearly suppressed ACE2 expression in a dose-dependent manner along with inducing CYP1A1. Knock-down experiments indicated a reduction of ACE2 by FICZ treatment in an AHR-dependent manner. Finally, treatments of AHR agonists inhibited SARS-CoV-2 infection into Vero E6 cells as determined with immunoblotting analyses detecting SARS-CoV-2 specific nucleocapsid protein. We here demonstrate that treatment with AHR agonists, including FICZ, and OMP, decreases expression of ACE2 via AHR activation, resulting in suppression of SARS-CoV-2 infection in mammalian cells.
Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/agonists , COVID-19 Drug Treatment , Carbazoles/pharmacology , Omeprazole/pharmacology , Receptors, Aryl Hydrocarbon/agonists , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , COVID-19/virology , Carbazoles/therapeutic use , Chlorocebus aethiops , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hep G2 Cells , Humans , Omeprazole/therapeutic use , RNA-Seq , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Vero Cells , Virus Internalization/drug effectsABSTRACT
RIG-I-like receptors (RLR), RIG-I and MDA5, are cytoplasmic viral RNA sensors that recognize viral double-stranded RNAs and trigger signals to induce antiviral responses, including type I interferon production. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 pandemic. However, the RLR role in innate immune response to SARS-CoV-2 has not been fully elucidated. Here, we studied the roles of RLR in cytokine expression responding to SARS-CoV-2 and found that not only MDA5 but also RIG-I are involved in innate immune responses in some types of human cells. Transfection of total RNAs extracted from SARS-CoV-2-infected cells into epithelial cells induced IFN-ß, IP-10, and Ccl5 mRNA expression. The cytokine expression was reduced by knockout of either RIG-I or MDA5, suggesting that both proteins are required for appropriate innate immune response to SARS-CoV-2. Two viral genomic RNA regions strongly induced type I IFN expression, and a 200-base fragment of viral RNA preferentially induced type I IFN in a RIG-I-dependent manner. In contrast, SARS-CoV-2 infectious particles hardly induced cytokine expression, suggesting viral escape from the host response. Viral 9b protein inhibited RIG-I and MAVS interaction, and viral 7a protein destabilized the TBK1 protein, leading to attenuated IRF-3 phosphorylation required for type I IFN expression. Our data elucidated the mechanism underlying RLR-mediated response to SARS-CoV-2 infection and viral escape from the host innate immune response.
Subject(s)
COVID-19/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Retinoic Acid/metabolism , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/immunology , Gene Knockdown Techniques , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Phosphorylation , RNA, Viral/immunology , Receptors, Retinoic Acid/genetics , Signal Transduction , Viral Matrix Proteins/metabolismABSTRACT
BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Subject(s)
Anopheles/parasitology , Insect Proteins/genetics , Plasmodium falciparum/physiology , RNA Interference , Animals , Anopheles/genetics , Female , Gene Knockdown Techniques , Insect Proteins/metabolism , Salivary Glands/parasitology , Sporozoites/physiologyABSTRACT
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Subject(s)
COVID-19/metabolism , COVID-19/virology , Energy Metabolism , Genome, Viral , Guanylate Kinases/metabolism , Host-Pathogen Interactions , Mutation , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , Gene Knockdown Techniques , Humans , Lipid Metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/drug effects , Viral Load , Virus Replication , COVID-19 Drug TreatmentABSTRACT
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.
Subject(s)
COVID-19/metabolism , COVID-19/virology , Calcium Signaling/physiology , Microtubule-Associated Proteins/metabolism , NADP/analogs & derivatives , SARS-CoV-2/physiology , Affinity Labels , Animals , Calcium Channels/metabolism , Carrier Proteins/metabolism , Click Chemistry/methods , Gene Knockdown Techniques , HEK293 Cells , Humans , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , NADP/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Second Messenger Systems/physiology , Transcriptome , Virus InternalizationABSTRACT
The coronavirus disease 2019 (COVID-19) first appeared in December 2019 and rapidly spread throughout the world. The SARS-CoV-2 virus enters the host cells by binding to the angiotensin-converting enzyme 2 (ACE2). Although much of the focus is on respiratory symptoms, recent reports suggest that SARS-CoV-2 can cause pregnancy complications such as pre-term birth and miscarriages; and women with COVID-19 have had maternal vascular malperfusion and decidual arteriopathy in their placentas. Here, we report that the ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and the expression increases in stromal cells in the secretory phase. It was observed that the ACE2 mRNA and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. Furthermore, HESCs transfected with ACE2-targeting siRNA impaired the full decidualization response, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1. Additionally, in mice during pregnancy, the ACE2 protein was expressed in the uterine epithelial cells, and stromal cells increased through day 6 of pregnancy. Finally, progesterone induced Ace2 mRNA expression in mouse uteri more than vehicle or estrogen. These data establish a role for ACE2 in endometrial physiology, suggesting that SARS-CoV-2 may be able to enter endometrial stromal cells and elicit pathological manifestations in women with COVID-19, including an increased risk of early pregnancy loss.
Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Endometrium/physiology , SARS-CoV-2/physiology , Stromal Cells/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , Cells, Cultured , Endometrium/cytology , Female , Gene Expression Regulation, Enzymologic/physiology , Gene Knockdown Techniques , Humans , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Mice , Pregnancy , Prolactin/genetics , Prolactin/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolismABSTRACT
Tyrosine kinase 2 (TYK2) is a member of the JAK family of nonreceptor tyrosine kinase, together with JAK1, JAK2, and JAK3. JAKs are important signaling mediators of many proinflammatory cytokines and represent compelling pharmacological targets for autoimmune and inflammatory diseases. Pan-acting small-molecule JAK inhibitors were approved for the treatment of rheumatoid arthritis and ulcerative colitis. However, their limited selectivity among JAK members have led to undesirable side effects, driving a search toward specific JAK inhibitors. Recently, TYK2 has emerged as a target of choice for the treatment of autoimmune diseases and severe COVID-19 with an optimum balance between efficacy and safety, based on observations from human genetics studies and clinical outcomes of several agents targeting cytokine pathways for which TYK2 plays an essential role. In this article, we address selective targeting of TYK2 from the genetic sequence space through development of antisense oligonucleotides (ASOs) against TYK2 mRNA. Potent ASO candidates were identified from the screening of over 200 ASOs using locked nucleic acid gapmer design. The lead ASOs exhibited potent and selective knockdown of TYK2 mRNA and protein across a panel of model human cell lines in a dose-dependent manner, showing no reduction in the mRNA and protein expression levels of other JAK paralogs. In agreement with the depletion of TYK2 proteins, several TYK2-mediated cytokine signaling pathways, including IFN-α and IL-12, were inhibited upon ASO treatment. Our results established the TYK2 ASOs as investigational tool compound and potential therapeutic agent for the treatment of autoimmune diseases and severe COVID-19.
Subject(s)
Autoimmune Diseases/drug therapy , COVID-19 Drug Treatment , Janus Kinase Inhibitors/therapeutic use , Oligonucleotides, Antisense/genetics , RNA, Messenger/genetics , SARS-CoV-2/physiology , TYK2 Kinase/genetics , Disease Progression , Gene Knockdown Techniques , Humans , Interferon-alpha/metabolism , Interleukin-12/metabolism , Jurkat Cells , Molecular Targeted Therapy , Oligonucleotides, Antisense/therapeutic use , Signal TransductionABSTRACT
To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.
Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Biosynthetic Pathways , COVID-19/metabolism , Cholesterol/biosynthesis , Clustered Regularly Interspaced Short Palindromic Repeats , Endosomes/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Gene Knockout Techniques/methods , Genome-Wide Association Study , Host-Pathogen Interactions/drug effects , Humans , RNA Interference , SARS-CoV-2/growth & development , Single-Cell Analysis , Viral Load/drug effects , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding ProteinsABSTRACT
Due to the important pathological roles of the HIV-1 gp120, the protein has been intensively used in the research of HIV. However, recombinant gp120 preparation has proven to be difficult because of extremely low expression levels. In order to facilitate gp120 expression, previous methods predominantly involved the replacement of native signal peptide with a heterologous one, resulting in very limited improvement. Currently, preparation of recombinant gp120 with native glycans relies solely on transient expression systems, which are not amendable for large scale production. In this work, we employed a different approach for gp120 expression. Besides replacing the native gp120 signal peptide with that of rat serum albumin and optimizing its codon usage, we generated a stable gp120-expressing cell line in a glutamine synthetase knockout HEK293T cell line that we established for the purpose of amplification of recombinant gene expressions. The combined usage of these techniques dramatically increased gp120 expression levels and yielded a functional product with human cell derived glycan. This method may be applicable to large scale preparation of other viral envelope proteins, such as that of the emerging SARS-CoV-2, or other glycoproteins which require the presence of authentic human glycans.
Subject(s)
Glutamate-Ammonia Ligase/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Animals , CHO Cells , CRISPR-Cas Systems , Codon , Cricetulus , Gene Knockdown Techniques , HEK293 Cells , Humans , Protein Sorting Signals , Recombinant Proteins/metabolismABSTRACT
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.