Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
PLoS Genet ; 18(4): e1010113, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817364

ABSTRACT

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828 = 53 and nrs505922 = 59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p = 1.32 x 10-199), and thrombosis ORrs505922 1.33, p = 2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10-23, lupus OR 0.84, p = 3.97 x 10-06. PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10-13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/genetics , Genetic Association Studies , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics
2.
PLoS One ; 17(3): e0262373, 2022.
Article in English | MEDLINE | ID: covidwho-1753184

ABSTRACT

Human genetics has been proposed to play an essential role in inter-individual differences in respiratory virus infection occurrence and outcomes. To systematically understand human genetic contributions to respiratory virus infection, we developed the database dbGSRV, a manually curated database that integrated the host genetic susceptibility and severity studies of respiratory viruses scattered over literatures in PubMed. At present, dbGSRV contains 1932 records of genetic association studies relating 1010 unique variants and seven respiratory viruses, manually curated from 168 published articles. Users can access the records by quick searching, batch searching, advanced searching and browsing. Reference information, infection status, population information, mutation information and disease relationship are provided for each record, as well as hyperlinks to public databases in convenient of users accessing more information. In addition, a visual overview of the topological network relationship between respiratory viruses and associated genes is provided. Therefore, dbGSRV offers a convenient resource for researchers to browse and retrieve genetic associations with respiratory viruses, which may inspire future studies and provide new insights in our understanding and treatment of respiratory virus infection. Database URL: http://www.ehbio.com/dbGSRV/front/.


Subject(s)
Virus Diseases , Viruses , Databases, Factual , Databases, Genetic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Virus Diseases/genetics , Viruses/genetics
3.
Cytokine ; 143: 155525, 2021 07.
Article in English | MEDLINE | ID: covidwho-1628419

ABSTRACT

Interferon gamma (IFN-γ) is a crucial cytokine in host immune response to hepatitis B virus (HBV) infection. This study aimed to determine whether a functional polymorphism +874T/A in IFN-γ gene linked to high and low producer phenotypes [IFN-γ (+874Thigh â†’ Alow)] may alter the outcomes of chronic HBV infection in Tunisian population. The +874T/A was analysed by ARMS-PCR method in the group of 200 patients chronically infected with HBV and 200 healthy controls. We observed that minor +874A allele, minor +874AA and +874TA genotypes were significantly more frequent in the chronic hepatitis B group in comparison to the control group [49 vs. 31%, P < 10-4; 24 vs. 13%, P < 10-4; 52 vs. 38%, P < 10-4; respectively]. Besides, they were associated with susceptibility to hepatitis B infection [OR = 2.15, 3.87 and 2.84, respectively]. The minor +874A allele and +874AA genotype were statistically more representative in the sub-group of patients with high viral DNA load when compared with the sub-group of patients with low HBV DNA load [(57% vs. 43%, P = 0.003, OR = 1.79); (33% vs. 14%, P = 0.003, OR = 3.59), respectively]. Collectively, our study suggests an association between the IFN-γ +874T/A SNP and persistence of HBV by the enhancement of HBV DNA replication.


Subject(s)
DNA Replication , Genetic Association Studies , Genetic Predisposition to Disease , Hepatitis B virus/physiology , Hepatitis B, Chronic/genetics , Interferon-gamma/genetics , Polymorphism, Single Nucleotide/genetics , Virus Replication/physiology , Adult , Alleles , Case-Control Studies , DNA, Viral/genetics , Female , Gene Frequency/genetics , Hepatitis B, Chronic/virology , Humans , Male , Viral Load/genetics
4.
Acta Neuropathol Commun ; 9(1): 199, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1634344

ABSTRACT

Apolipoprotein E ε4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.


Subject(s)
Apolipoprotein E4/genetics , COVID-19/complications , COVID-19/genetics , Cerebral Hemorrhage/genetics , Mental Fatigue/genetics , Patient Acuity , Adult , Aged , Autopsy , Biological Specimen Banks , COVID-19/diagnosis , COVID-19/epidemiology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/epidemiology , Cohort Studies , Female , Finland/epidemiology , Genetic Association Studies/methods , Heterozygote , Humans , Male , Mental Fatigue/diagnosis , Mental Fatigue/epidemiology , Microvessels/pathology , Middle Aged , Prospective Studies , Risk Factors , Young Adult
5.
Science ; 374(6569): eabj1541, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1526448

ABSTRACT

Characterization of the genetic regulation of proteins is essential for understanding disease etiology and developing therapies. We identified 10,674 genetic associations for 3892 plasma proteins to create a cis-anchored gene-protein-disease map of 1859 connections that highlights strong cross-disease biological convergence. This proteo-genomic map provides a framework to connect etiologically related diseases, to provide biological context for new or emerging disorders, and to integrate different biological domains to establish mechanisms for known gene-disease links. Our results identify proteo-genomic connections within and between diseases and establish the value of cis-protein variants for annotation of likely causal disease genes at loci identified in genome-wide association studies, thereby addressing a major barrier to experimental validation and clinical translation of genetic discoveries.


Subject(s)
Blood Proteins/genetics , Disease/genetics , Genome, Human , Genomics , Proteins/genetics , Proteome , Aging , Alternative Splicing , Blood Proteins/metabolism , COVID-19/genetics , Connective Tissue Diseases/genetics , Disease/etiology , Drug Development , Female , Gallstones/genetics , Genetic Association Studies , Genetic Variation , Genome-Wide Association Study , Humans , Internet , Male , Phenotype , Proteins/metabolism , Quantitative Trait Loci , Sex Characteristics
6.
J Mol Med (Berl) ; 100(2): 285-301, 2022 02.
Article in English | MEDLINE | ID: covidwho-1505851

ABSTRACT

The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhesion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX also increased in individuals aged 60-69 years old; conversely, the RGS2 gene decreased with aging. We further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing them as therapeutic candidates for aggressive clinical manifestation of COVID-19. KEY MESSAGES: • Prediction of host-viral interactions in the whole blood transcriptome during aging. • Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood. • Blood interactome reveals targets involved with immune response, inflammation, and blood clots. • SARS-CoV-2-infected patients with high viral load showed FASLG overexpression. • Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging.


Subject(s)
Aging/blood , Blood Proteins/analysis , COVID-19/genetics , SARS-CoV-2/pathogenicity , Transcriptome , Adult , Aged , Aging/genetics , Blood/metabolism , Blood Chemical Analysis , Blood Proteins/genetics , Blood Proteins/metabolism , Blood Vessels/metabolism , Blood Vessels/virology , COVID-19/blood , COVID-19/immunology , COVID-19/physiopathology , Cardiovascular Physiological Phenomena/genetics , Cardiovascular System/metabolism , Cardiovascular System/virology , Cohort Studies , Female , Genetic Association Studies , Humans , Immunity, Innate/genetics , Male , Middle Aged , Young Adult
7.
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Article in English | MEDLINE | ID: covidwho-1497067

ABSTRACT

Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.


Subject(s)
COVID-19 , Carcinoma, Endometrioid , Endometrial Neoplasms , Host-Pathogen Interactions , Naphthoquinones/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/genetics , Calcium-Binding Proteins/drug effects , Calcium-Binding Proteins/metabolism , Carcinoma, Endometrioid/complications , Carcinoma, Endometrioid/diagnosis , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Computational Biology , Drug Screening Assays, Antitumor/methods , Endometrial Neoplasms/complications , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genetic Association Studies , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Middle Aged , Mitogen-Activated Protein Kinase 3/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation/methods , Naphthoquinones/therapeutic use , Prognosis , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Uterus/virology
8.
Hum Mol Genet ; 30(R2): R274-R284, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1455301

ABSTRACT

The mouse is the pre-eminent model organism for studies of mammalian gene function and has provided an extraordinarily rich range of insights into basic genetic mechanisms and biological systems. Over several decades, the characterization of mouse mutants has illuminated the relationship between gene and phenotype, providing transformational insights into the genetic bases of disease. However, if we are to deliver the promise of genomic and precision medicine, we must develop a comprehensive catalogue of mammalian gene function that uncovers the dark genome and elucidates pleiotropy. Advances in large-scale mouse mutagenesis programmes allied to high-throughput mouse phenomics are now addressing this challenge and systematically revealing novel gene function and multi-morbidities. Alongside the development of these pan-genomic mutational resources, mouse genetics is employing a range of diversity resources to delineate gene-gene and gene-environment interactions and to explore genetic context. Critically, mouse genetics is a powerful tool for assessing the functional impact of human genetic variation and determining the causal relationship between variant and disease. Together these approaches provide unique opportunities to dissect in vivo mechanisms and systems to understand pathophysiology and disease. Moreover, the provision and utility of mouse models of disease has flourished and engages cumulatively at numerous points across the translational spectrum from basic mechanistic studies to pre-clinical studies, target discovery and therapeutic development.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genome , Genomics , Alleles , Animals , Disease Models, Animal , Drug Discovery , Gene Expression Regulation , Genetic Association Studies/methods , Genetic Engineering , Genome-Wide Association Study , Genomics/methods , High-Throughput Screening Assays , Humans , Mice , Mutagenesis , Mutation , Phenomics/methods , Phenotype , Precision Medicine , Signal Transduction
10.
J Med Virol ; 93(10): 5947-5952, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432432

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease, and the reason behind the currently ongoing pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme (ACE2) has been recognized as the specific receptor of the SARS-CoV-2 virus. Although the possible effect of ACE2 gene polymorphism remains unknown, human ACE2 receptor expression influences SARS-CoV-2 susceptibility and COVID-19 disease outcome. In this study, we aimed to investigate the relationship between ACE gene I/D polymorphism, ACE2 receptor gene polymorphism, and COVID-19 severity. ACE gene insertion/deletion (I/D) polymorphism and ACE2 receptor gene rs2106809 and rs2285666 polymorphisms were determined using polymerase chain reaction (PCR) and PCR-based restriction fragment length polymorphism methods, respectively, in 155 COVID-19 patients who were divided into three groups (mild, moderate, and severe) according to clinical symptoms. However, the distribution of genotype and allele frequencies of ACE gene I/D, ACE2 receptor gene rs2106809, and rs2285666 polymorphisms were not statistically significant in all groups. In conclusion, in the study population, ACE gene I/D, ACE2 receptor gene rs2106809, and rs2285666 polymorphisms were not associated with the severity of COVID-19 infection. Although ACE2 receptor gene expression may affect the susceptibility to COVID-19, there is no existing evidence that the ACE or ACE2 gene polymorphisms are directly associated with COVID-19 severity. Interindividual differences in COVID-19 severity might be related to epigenetic mechanisms of ACE2 receptor gene expression or variations in other genes suggested to play a critical role in COVID-19 pathogenesis such as pro-inflammatory cytokines and coagulation indicators.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Aged , COVID-19/diagnosis , Gene Frequency , Genetic Association Studies , Genotype , Humans , Middle Aged , Negative Results , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index
11.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432418

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
12.
J Renin Angiotensin Aldosterone Syst ; 2021: 5509280, 2021.
Article in English | MEDLINE | ID: covidwho-1430254

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19), that is caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), has spread rapidly worldwide since December 2019. The SARS-CoV-2 virus has a great affinity for the angiotensin-converting enzyme-2 (ACE-2) receptor, which is an essential element of the renin-angiotensin system (RAS). This study is aimed at assessing the impact of the angiotensin-converting enzyme (ACE) gene insertion (I)/deletion (D) polymorphisms, on the susceptibility and clinical outcomes of the COVID-19 immunoinflammatory syndrome. Patients and Methods. A total of 112 patients diagnosed with COVID-19 between 1 and 15 May 2020 were enrolled in the study. ACE gene allele frequencies were compared to the previously reported Turkish population comprised of 300 people. RESULTS: The most common genotype in the patients and control group was DI with 53% and II with 42%, respectively. The difference in the presence of the D allele between the patient and control groups was statistically significant (67% vs. 42%, respectively, p < 0.0001). Severe pneumonia was observed more in patients with DI allele (31%) than DD (8%) and II (0%) (p = 0.021). The mortality rate, time to defervescence, and the hospitalization duration were not different between the genotype groups. CONCLUSION: Genotype DI of ACE I/D polymorphism is associated with the infectious rate particularly severe pneumonia in this study conducted in the Turkish population. Therefore, ACE D/I polymorphism could affect the clinical course of COVID-19.


Subject(s)
COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Gene Frequency , Genetic Association Studies , Humans , INDEL Mutation , Male , Middle Aged , Polymorphism, Genetic , Renin-Angiotensin System , Young Adult
13.
Cell ; 181(6): 1194-1199, 2020 06 11.
Article in English | MEDLINE | ID: covidwho-1385209

ABSTRACT

SARS-CoV-2 infection displays immense inter-individual clinical variability, ranging from silent infection to lethal disease. The role of human genetics in determining clinical response to the virus remains unclear. Studies of outliers-individuals remaining uninfected despite viral exposure and healthy young patients with life-threatening disease-present a unique opportunity to reveal human genetic determinants of infection and disease.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Age Factors , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Disease Resistance , Genetic Association Studies , Genetic Diseases, Inborn/immunology , Genetic Variation , Genome, Human , Host-Pathogen Interactions , Humans , Infections/genetics , Infections/immunology , Infections/physiopathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , SARS-CoV-2
15.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1365266

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Loss of Function Mutation , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Severity of Illness Index , Toll-Like Receptor 3/genetics , Whole Exome Sequencing , Whole Genome Sequencing , Young Adult
17.
J Med Virol ; 93(10): 5947-5952, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1281227

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease, and the reason behind the currently ongoing pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme (ACE2) has been recognized as the specific receptor of the SARS-CoV-2 virus. Although the possible effect of ACE2 gene polymorphism remains unknown, human ACE2 receptor expression influences SARS-CoV-2 susceptibility and COVID-19 disease outcome. In this study, we aimed to investigate the relationship between ACE gene I/D polymorphism, ACE2 receptor gene polymorphism, and COVID-19 severity. ACE gene insertion/deletion (I/D) polymorphism and ACE2 receptor gene rs2106809 and rs2285666 polymorphisms were determined using polymerase chain reaction (PCR) and PCR-based restriction fragment length polymorphism methods, respectively, in 155 COVID-19 patients who were divided into three groups (mild, moderate, and severe) according to clinical symptoms. However, the distribution of genotype and allele frequencies of ACE gene I/D, ACE2 receptor gene rs2106809, and rs2285666 polymorphisms were not statistically significant in all groups. In conclusion, in the study population, ACE gene I/D, ACE2 receptor gene rs2106809, and rs2285666 polymorphisms were not associated with the severity of COVID-19 infection. Although ACE2 receptor gene expression may affect the susceptibility to COVID-19, there is no existing evidence that the ACE or ACE2 gene polymorphisms are directly associated with COVID-19 severity. Interindividual differences in COVID-19 severity might be related to epigenetic mechanisms of ACE2 receptor gene expression or variations in other genes suggested to play a critical role in COVID-19 pathogenesis such as pro-inflammatory cytokines and coagulation indicators.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Aged , COVID-19/diagnosis , Gene Frequency , Genetic Association Studies , Genotype , Humans , Middle Aged , Negative Results , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index
19.
J Med Virol ; 93(7): 4430-4437, 2021 07.
Article in English | MEDLINE | ID: covidwho-1263109

ABSTRACT

Regional variations are found in the incidence and severity of the COVID-19 infection. Human leukocyte antigen (HLA) polymorphism is one of the genetic factors that might have an impact on the outcome of the disease. This study explored the association between the HLA genotype and the severity of COVID-19 among patients from South Asia. Blood samples from 95 Asians (Bangladeshis, Indians, and Pakistanis) with COVID-19 were collected. The patients were divided according to the severity of their infection: mild (N = 64), severe (N = 31), and fatal (N = 20). DNA was extracted from all samples, and HLA genotyping was performed for both class I (A, B, and C) and class II (DRB1, DQA1, and DQB1) using the PCR-rSSO (polymerase chain reaction-reverse sequence-specific oligonucleotide) molecular method. The frequency of HLA-B*51 was significantly higher among patients in the fatal group than among those in the mild infection group (15% vs. 4.7%, p = 0.027). Additionally, the frequency of HLA-B*35 was significantly higher in the mild infection group than in the fatal group (21.1% vs. 7.5%, p = 0.050 [a borderline p-value]). In terms of HLA class II, DRB1*13 was significantly observed in the fatal group than in the mild infection group (17.5% vs. 11.3%, p = 0.049). However, the p-value for all alleles became insignificant after a statistical correction for the p-values (pc = 0.216, pc = 0.4, and pc = 0.49, respectively). Compared with all published data, this study highlights that the association between the HLA system and the COVID-19 outcome might be ethnic-dependent. Genetic variation between populations must be examined on a wider scale to assess infection prognosis and vaccine effectiveness.


Subject(s)
COVID-19/pathology , HLA-A Antigens/genetics , HLA-B Antigens/genetics , HLA-C Antigens/genetics , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Bangladesh , COVID-19/genetics , Gene Frequency/genetics , Genetic Association Studies , Genotype , Humans , India , Pakistan , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2 , Severity of Illness Index
20.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1252013

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL