Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Genes (Basel) ; 12(11)2021 11 22.
Article in English | MEDLINE | ID: covidwho-1533885

ABSTRACT

Host genomic information, specifically genomic variations, may characterize susceptibility to disease and identify people with a higher risk of harm, leading to better targeting of care and vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the other hand has a very low mortality rate. In this study, we compared whole-genome sequencing data of 14398 adults and Qatari-national to 925 Italian individuals. We also included in the comparison whole-exome sequence data from 189 Italian laboratory-confirmed COVID-19 cases. We focused our study on a curated list of 3619 candidate genes involved in innate immunity and host-pathogen interaction. Two population-gene metric scores, the Delta Singleton-Cohort variant score (DSC) and Sum Singleton-Cohort variant score (SSC), were applied to estimate the presence of selective constraints in the Qatari population and in the Italian cohorts. Results based on DSC and SSC metrics demonstrated a different selective pressure on three genes (MUC5AC, ABCA7, FLNA) between Qatari and Italian populations. This study highlighted the genetic differences between Qatari and Italian populations and identified a subset of genes involved in innate immunity and host-pathogen interaction.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Host Microbial Interactions/genetics , Adult , Alleles , COVID-19/epidemiology , Communicable Disease Control , Disease Susceptibility/metabolism , Exome/genetics , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/epidemiology , Genetics, Population , Genomics/methods , Humans , Immunity, Innate/immunology , Italy/epidemiology , Male , Qatar/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Whole Exome Sequencing/methods , Whole Genome Sequencing/methods
2.
Brain ; 144(12): 3727-3741, 2021 12 31.
Article in English | MEDLINE | ID: covidwho-1455243

ABSTRACT

Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Alzheimer Disease/genetics , COVID-19/genetics , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Patient Acuity , Adolescent , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cells, Cultured , Female , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/epidemiology , Humans , Induced Pluripotent Stem Cells/physiology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
3.
Immunogenetics ; 73(6): 449-458, 2021 12.
Article in English | MEDLINE | ID: covidwho-1427233

ABSTRACT

Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P < 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Receptors, KIR/genetics , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , Female , Genetic Predisposition to Disease/epidemiology , HLA Antigens/genetics , Haplotypes , Humans , Ligands , Male , Middle Aged , Models, Statistical , Prospective Studies , ROC Curve , Risk Assessment , SARS-CoV-2 , Turkey/epidemiology
4.
J Endocrinol Invest ; 44(5): 951-956, 2021 May.
Article in English | MEDLINE | ID: covidwho-763952

ABSTRACT

BACKGROUND: The recent emergence of COVID-19 poses a global health emergency. One of the most frequently reported data is sex-related severity and mortality: according to the last available analysis on 239,709 patients in Italy, lethality is 17.7% in men and 10.8% in women, with 59% of total deaths being men. Interestingly, the infection rate is lower in males than in females, with 45.8% and 54.2% of positive cases, respectively, suggesting that gender-related factor may worsen disease evolution. A tentative hypothesis to explain these findings is the role of angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 involved in viral infection. PURPOSE: In this review, we summarize the available evidence pointing to gender-related differences in ACE2 and TMPRSS2 expression, from both genetic and endocrine points of view. RESULTS: Altogether, available evidence points toward two not-mutually exclusive mechanisms in gender susceptibility to COVID-19 by sex hormonal regulation of ACE2 and TMPRSS2. On one hand, ACE2 expression could be increased in women, either by estrogens or constitutively by X chromosome inactivation escape or by reduced methylation, providing a larger reservoir of ACE2 to maintain the fundamental equilibrium of RAS regulatory axis. On the other, low levels of androgens in women may keep at low levels TMPRSS2 expression, representing a further protective factor for the development of COVID-19 infection, despite the increased expression of ACE2, which represents the Trojan horse for SARS-CoV-2 entry. CONCLUSIONS: Both mechanisms consistently point to the role of sex hormones and sex chromosomes in the differential severity and lethality of COVID-19 in men and women.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Chromosomes, Human, X/genetics , Genetic Predisposition to Disease/epidemiology , Gonadal Steroid Hormones , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Female , Humans , Male , Serine Endopeptidases/blood , Serine Endopeptidases/genetics , Sex Characteristics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL