Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
J Mol Med (Berl) ; 100(6): 875-901, 2022 06.
Article in English | MEDLINE | ID: covidwho-1858961

ABSTRACT

Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20-42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. KEY MESSAGES: First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.


Subject(s)
COVID-19 , Gene Transfer Techniques , Adenoviridae/genetics , COVID-19 Vaccines , Genetic Therapy/methods , Genetic Vectors/genetics , Humans
2.
J Ocul Pharmacol Ther ; 37(7): 383-385, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1821676
3.
Muscle Nerve ; 65(5): 498-507, 2022 05.
Article in English | MEDLINE | ID: covidwho-1813581

ABSTRACT

Spinal muscular atrophy (SMA) is a group of neurodegenerative disorders resulting from the loss of spinal motor neurons. 95% of patients share a pathogenic mechanism of loss of survival motor neuron (SMN) 1 protein expression due to homozygous deletions or other mutations of the SMN1 gene, with the different phenotypes influenced by variable copy numbers of the SMN2 gene. Advances in supportive care, disease modifying treatment and novel gene therapies have led to an increase in the prevalence of SMA, with a third of SMA patients now represented by adults. Despite the growing number of adult patients, consensus on the management of SMA has focused primarily on the pediatric population. As the disease burden is vastly different in adult SMA, an approach to treatment must be tailored to their unique needs. This review will focus on the management of the adult SMA patient as they age and will discuss proper transition of care from a pediatric to adult center, including the need for continued monitoring for osteoporosis, scoliosis, malnutrition, and declining mobility and functioning. As in the pediatric population, multidisciplinary care remains the best approach to the management of adult SMA. Novel and emerging therapies such as nusinersen and risdiplam provide hope for these patients, though these medications are of uncertain efficacy in this population and require additional study.


Subject(s)
Muscular Atrophy, Spinal , Adult , Genetic Therapy , Homozygote , Humans , Motor Neurons/pathology , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Phenotype , Survival of Motor Neuron 1 Protein/genetics
4.
Hum Gene Ther ; 33(7-8): 389-403, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1806227

ABSTRACT

While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong ß-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500-1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.


Subject(s)
COVID-19 , RNA, Viral , Animals , COVID-19/therapy , Cytokines/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cells/metabolism , Macaca mulatta , Mice , Mice, Transgenic , RNA, Viral/metabolism , SARS-CoV-2/genetics , Viremia/metabolism
5.
Biomed Pharmacother ; 148: 112743, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1803592

ABSTRACT

Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy/methods , Virus Diseases/therapy , COVID-19/therapy , Genome, Viral , HIV Infections/therapy , Hepatitis B/therapy , Herpesviridae Infections/therapy , Humans , Papillomavirus Infections/therapy , SARS-CoV-2
6.
Viruses ; 14(4)2022 03 31.
Article in English | MEDLINE | ID: covidwho-1776354

ABSTRACT

SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.


Subject(s)
COVID-19 , Viruses , COVID-19/therapy , Genes, p53 , Genetic Therapy , Humans , Immunity, Innate , Pandemics , SARS-CoV-2/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Viruses/metabolism
8.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1760646

ABSTRACT

The impressive advances in the knowledge of biomarkers and molecular targets has enabled significant progress in drug therapy for crucial diseases such as cancer. Specific areas of pharmacology have contributed to these therapeutic outcomes-mainly targeted therapy, immunomodulatory therapy, and gene therapy. This review focuses on the pharmacological profiles of these therapeutic classes and intends, on the one hand, to provide a systematic definition and, on the other, to highlight some aspects related to pharmacovigilance, namely the monitoring of safety and the identification of potential toxicities and adverse drug reactions. Although clinicians often consider pharmacovigilance a non-priority area, it highlights the risk/benefit ratio, an essential factor, especially for these advanced therapies, which represent the most innovative and promising horizon in oncology.


Subject(s)
Antineoplastic Agents , Drug-Related Side Effects and Adverse Reactions , Adverse Drug Reaction Reporting Systems , Antineoplastic Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions/drug therapy , Drug-Related Side Effects and Adverse Reactions/etiology , Genetic Therapy , Humans , Medical Oncology , Molecular Targeted Therapy/adverse effects , Pharmacovigilance
9.
Ann Clin Transl Neurol ; 9(3): 339-350, 2022 03.
Article in English | MEDLINE | ID: covidwho-1750288

ABSTRACT

OBJECTIVE: To provide a greater understanding of the tolerability, safety and clinical outcomes of onasemnogene abeparvovec in real-world practice, in a broad population of infants with spinal muscular atrophy (SMA). METHODS: A prospective cohort study of children with SMA treated with onasemnogene abeparvovec at Sydney Children's Hospital Network, Australia was conducted from August 2019 to November 2021. Safety outcomes included clinical and laboratory evaluations. Efficacy assessments included World Health Organisation (WHO) motor milestones, oral and swallowing abilities, and requirements for respiratory support. The implementation of a model of care for onasemnogene abeparvovec administration in health practice is described. RESULTS: 21 children were treated (age range, 0.65-24 months; body weight range, 2.5-12.5 kg) and 19/21 (90.4%) had previous nusinersen. Transient treatment-related side effects occurred in all children; vomiting (100%), transaminitis (57%) and thrombocytopaenia (33%). Incidence of moderate/severe transaminitis was significantly greater in infants weighing ≥8 kg compared with <8 kg (p < 0.05). Duration of prednisolone following treatment was prolonged (mean 87.5 days, range 57-274 days). 16/21 (76%) children gained at least one WHO motor milestone. Stabilisation or improvement in bulbar or respiratory function was observed in 20/21 (95.2%) patients. Implementation challenges were mitigated by developing standard operating procedures and facilitating exchange of knowledge. INTERPRETATION: This study provides real-world evidence to inform treatment decisions and guide therapeutic expectations for onasemnogene abeparvovec and combination therapy for SMA in health practice, especially for children weighing ≥8 kg receiving higher vector loads. Proactive clinical and laboratory surveillance is essential to facilitate individualised management of risks.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Australia , Child , Child, Preschool , Genetic Therapy/methods , Humans , Infant , Infant, Newborn , Prospective Studies , Spinal Muscular Atrophies of Childhood/drug therapy
10.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742489

ABSTRACT

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Methane/chemistry , Pyridinium Compounds/chemistry , Surface-Active Agents/chemistry , Transfection/methods , A549 Cells , Cell Survival , DNA/chemistry , DNA/metabolism , Genetic Therapy/methods , Halogenation , Humans , Hydrogenation , Methane/metabolism , Microscopy, Atomic Force , Molecular Structure , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Pyridinium Compounds/metabolism , Reproducibility of Results , Surface-Active Agents/metabolism
11.
Nihon Ronen Igakkai Zasshi ; 59(1): 34-38, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1736703
12.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648333

ABSTRACT

The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers-short fragments of nucleic acids, DNA or RNA-that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.


Subject(s)
Aptamers, Nucleotide/therapeutic use , COVID-19 Testing/methods , COVID-19/therapy , Aptamers, Nucleotide/pharmacology , COVID-19/diagnosis , COVID-19/economics , COVID-19/virology , COVID-19 Testing/economics , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Point-of-Care Testing/economics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
13.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580694

ABSTRACT

Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.


Subject(s)
Lung Diseases/genetics , Lung Diseases/immunology , Telomere Shortening/immunology , Animals , COVID-19/genetics , COVID-19/immunology , Cellular Senescence/genetics , Genetic Therapy/methods , Humans , Immunotherapy/methods , Lung Diseases/drug therapy
14.
Int Immunol ; 33(10): 521-527, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1575141

ABSTRACT

There is currently an outbreak of respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus disease 2019 (COVID-19) is caused by infection with SARS-CoV-2. Individuals with COVID-19 have symptoms that are usually asymptomatic or mild in most initial cases. However, in some cases, moderate and severe symptoms have been observed with pneumonia. Many companies are developing COVID-19 vaccine candidates using different technologies that are classified into four groups (intact target viruses, proteins, viral vectors and nucleic acids). For rapid development, RNA vaccines and adenovirus vector vaccines have been urgently approved, and their injection has already started across the world. These types of vaccine technologies have been developed over more than 20 years using translational research for use against cancer or diseases caused by genetic disorders but the COVID-19 vaccines are the first licensed drugs to prevent infectious diseases using RNA vaccine technology. Although these vaccines are highly effective in preventing COVID-19 for a short period, safety and efficiency evaluations should be continuously monitored over a long time period. As the time of writing, more than 10 projects are now in phase 3 to evaluate the prevention of infection in double-blind studies. Hopefully, several projects may be approved to ensure high-efficiency and safe vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Animals , Double-Blind Method , Genetic Therapy/methods , Humans , SARS-CoV-2/immunology , Technology/methods , Vaccines, Synthetic/immunology
15.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572666

ABSTRACT

Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/genetics , Adenoviridae/physiology , COVID-19/prevention & control , Genetic Therapy , Animals , COVID-19 Vaccines , Cell Line, Tumor , Gene Expression , Genetic Vectors , Humans , Immunotherapy , Oncolytic Viruses/genetics , Pluripotent Stem Cells , Promoter Regions, Genetic , SARS-CoV-2 , Survivin , Virus Replication
16.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522

ABSTRACT

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Subject(s)
COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , /immunology
17.
Horm Mol Biol Clin Investig ; 43(1): 105-112, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1559691

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.


Subject(s)
COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , COVID-19/diagnosis , CRISPR-Cas Systems , Genetic Therapy/methods , Humans , Molecular Biology , SARS-CoV-2/genetics
18.
N Engl J Med ; 385(24): 2264-2270, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1560911

ABSTRACT

Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).


Subject(s)
Epidermis/transplantation , Epidermolysis Bullosa, Junctional/therapy , Keratinocytes/transplantation , Transduction, Genetic , Transgenes , Cell Self Renewal , Cells, Cultured/transplantation , Child , Clone Cells , Epidermis/pathology , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Follow-Up Studies , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/therapy , Genetic Therapy , Genetic Vectors , Humans , Keratinocytes/cytology , Keratinocytes/physiology , Male , Regeneration , Stem Cells/physiology , Transplantation, Autologous
19.
N Engl J Med ; 385(21): 1929-1940, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526127

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the standard of care for Hurler syndrome (mucopolysaccharidosis type I, Hurler variant [MPSIH]). However, this treatment is only partially curative and is associated with complications. METHODS: We are conducting an ongoing study involving eight children with MPSIH. At enrollment, the children lacked a suitable allogeneic donor and had a Developmental Quotient or Intelligence Quotient score above 70 (i.e., none had moderate or severe cognitive impairment). The children received autologous hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with an α-L-iduronidase (IDUA)-encoding lentiviral vector after myeloablative conditioning. Safety and correction of blood IDUA activity up to supraphysiologic levels were the primary end points. Clearance of lysosomal storage material as well as skeletal and neurophysiological development were assessed as secondary and exploratory end points. The planned duration of the study is 5 years. RESULTS: We now report interim results. The children's mean (±SD) age at the time of HSPC gene therapy was 1.9±0.5 years. At a median follow-up of 2.10 years, the procedure had a safety profile similar to that known for autologous hematopoietic stem-cell transplantation. All the patients showed prompt and sustained engraftment of gene-corrected cells and had supraphysiologic blood IDUA activity within a month, which was maintained up to the latest follow-up. Urinary glycosaminoglycan (GAG) excretion decreased steeply, reaching normal levels at 12 months in four of five patients who could be evaluated. Previously undetectable levels of IDUA activity in the cerebrospinal fluid became detectable after gene therapy and were associated with local clearance of GAGs. Patients showed stable cognitive performance, stable motor skills corresponding to continued motor development, improved or stable findings on magnetic resonance imaging of the brain and spine, reduced joint stiffness, and normal growth in line with World Health Organization growth charts. CONCLUSIONS: The delivery of HSPC gene therapy in patients with MPSIH resulted in extensive metabolic correction in peripheral tissues and the central nervous system. (Funded by Fondazione Telethon and others; ClinicalTrials.gov number, NCT03488394; EudraCT number, 2017-002430-23.).


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Iduronidase/metabolism , Mucopolysaccharidosis I/therapy , Child, Preschool , Female , Follow-Up Studies , Genetic Vectors , Glycosaminoglycans/urine , Humans , Iduronidase/deficiency , Iduronidase/genetics , Infant , Lentivirus , Male , Mucopolysaccharidosis I/metabolism , Mutation , Stem Cell Transplantation , Transplantation, Autologous
20.
Cytotherapy ; 24(3): 344-355, 2022 03.
Article in English | MEDLINE | ID: covidwho-1500026

ABSTRACT

BACKGROUND AIMS: The novelty of cell and gene therapies (CGTs) has introduced unique supply chain challenges and considerations not seen by chemically synthesized (small-molecule) drugs. These complexities increase during the clinical phases, where drug safety and efficacy milestones are still underdeveloped. For example, for autologous therapies such as chimeric antigen receptor T-cell therapies, in which the treatment is developed from the patient's own cells, supply chain management plays an integral role in chemistry, manufacturing and control processes. Supply chain management requires proactive planning because of the strict cold chain requirements and time sensitivity of CGTs. This research examines strategies and responses to challenges experienced by industry stakeholders (e.g., sponsors and manufacturers) during the implementation phases of clinical supply chain management. This research further evaluates the adequacy of the current regulatory framework for distribution and supply chain management of CGTs in the US. METHODS: A survey methodology was used to query subject matter experts from the biopharmaceutical industry who were familiar with the clinical supply management of CGTs in the US. The survey instrument was developed using an implementation framework and disseminated electronically to mid- and senior-level subject matter experts who had experience with clinical trials, supply chain management and CGTs. RESULTS: A total of 128 respondents accessed the survey, and 105 respondents answered at least one question. Seventy-five respondents completed the survey. Results showed that a lack of harmonization in regulations across the supply chain, limited resources, challenges with vendor management, high costs and complexities in the supply chain due to product specificity and customization proved to be impediments for the industry. In addition, the coronavirus disease 2019 pandemic had a significant impact on supply chain implementation. The results revealed that less than half of the respondents had business continuity plans in place. These challenges increased for smaller and mid-size organizations. Thirty percent of small and mid-size organizations were less prepared to scale up than larger companies. CONCLUSIONS: Suggestions from industry stakeholders were to adopt and enforce Good Distribution Practices in the US (81%), pre-plan distribution strategies with internal and external stakeholders along the supply chain and develop agile systems and robust processes end to end. Hurdles in scaling up and scaling out from the clinical to commercial phases for time- and temperature-sensitive CGT products make it difficult to predict the supply chain's long-term feasibility. Although there are initiatives to improve these impediments, such as improving industry partnerships and creating global CGT transportation standards, there are still regulatory knowledge gaps present for CGTs. Therefore, it is essential to establish a baseline and foundation for CGT supply chains extending beyond the loading dock.


Subject(s)
COVID-19 , Cell- and Tissue-Based Therapy , Genetic Therapy , Humans , SARS-CoV-2 , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL