Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Article in Russian | MEDLINE | ID: covidwho-20236063

ABSTRACT

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Subject(s)
Betacoronavirus 1 , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Coronavirus , Female , Cattle , Animals , Coronavirus, Bovine/genetics , Coronavirus/genetics , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Genetic Variation , Cattle Diseases/epidemiology
2.
Nature ; 617(7962): 764-768, 2023 May.
Article in English | MEDLINE | ID: covidwho-2325395

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genotype , Phenotype , Genetic Variation/genetics , Whole Genome Sequencing , Transcriptome , Monocytes/metabolism , rab GTP-Binding Proteins/genetics , Genotyping Techniques
3.
Comp Immunol Microbiol Infect Dis ; 94: 101956, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242665

ABSTRACT

Canine coronavirus (CCoV) is associated with diarrhea in dogs, with a high incidence and sometimes even death. However, there is currently limited information about its prevalence and molecular characterization in northeastern China. Therefore, in this study, we examined 325 canine fecal specimens in four provinces in northeastern China from 2019 to 2021. PCR results revealed that 57 out of 325 (17.5%) samples were found to be positive for CCoV, and the positive rate varies obviously with city, season, age and so on. High incidence (65%) of viral co-infection was detected in the diarrhea samples and mixed infection of distinct CCoV genotypes occurs extensively. More importantly, sequence analysis showed that the S gene has a strong mutation. Phylogenetic analysis demonstrated that CCoV-I and CCoV-II strains has different origins. In particular, we found the CCoV-IIa strains of S gene sequenced and the reference strain B906_ZJ_2019 were highly clustered, and the reference strain was a recombinant strain of CCoV-I and CCoV-II. Our findings provide useful orienting clues for evaluating the pathogenic potential of CCoV in canines, and point out more details on characterization in northeastern China. Further work is required to determine the significance and continuous genetic evolution of CCoV.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Prevalence , Phylogeny , Diarrhea/veterinary , China , Genetic Variation , Dog Diseases/epidemiology , Feces
4.
Front Public Health ; 10: 990832, 2022.
Article in English | MEDLINE | ID: covidwho-2241236

ABSTRACT

Introduction: The Delta variant posed an increased risk to global public health and rapidly replaced the pre-existent variants worldwide. In this study, the genetic diversity and the spatio-temporal dynamics of 662 SARS-CoV2 genomes obtained during the Delta wave across Tunisia were investigated. Methods: Viral whole genome and partial S-segment sequencing was performed using Illumina and Sanger platforms, respectively and lineage assignemnt was assessed using Pangolin version 1.2.4 and scorpio version 3.4.X. Phylogenetic and phylogeographic analyses were achieved using IQ-Tree and Beast programs. Results: The age distribution of the infected cases showed a large peak between 25 to 50 years. Twelve Delta sub-lineages were detected nation-wide with AY.122 being the predominant variant representing 94.6% of sequences. AY.122 sequences were highly related and shared the amino-acid change ORF1a:A498V, the synonymous mutations 2746T>C, 3037C>T, 8986C>T, 11332A>G in ORF1a and 23683C>T in the S gene with respect to the Wuhan reference genome (NC_045512.2). Spatio-temporal analysis indicates that the larger cities of Nabeul, Tunis and Kairouan constituted epicenters for the AY.122 sub-lineage and subsequent dispersion to the rest of the country. Discussion: This study adds more knowledge about the Delta variant and sub-variants distribution worldwide by documenting genomic and epidemiological data from Tunisia, a North African region. Such results may be helpful to the understanding of future COVID-19 waves and variants.


Subject(s)
COVID-19 , Genetic Variation , SARS-CoV-2 , Adult , Animals , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/virology , Pangolins , Phylogeny , RNA, Viral , SARS-CoV-2/genetics , Tunisia/epidemiology
5.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: covidwho-2213031

ABSTRACT

Human adenovirus F41 causes acute gastroenteritis in children, and has recently been associated with an apparent increase in paediatric hepatitis of unknown aetiology in the UK, with further cases reported in multiple countries. Relatively little is known about the genetic diversity of adenovirus F41 in UK children; and it is unclear what, if any, impact the COVID-19 pandemic has had on viral diversity in the UK. Methods that allow F41 to be sequenced from clinical samples without the need for viral culture are required to provide the genomic data to address these questions. Therefore, we evaluated an overlapping-amplicon method of sequencing adenovirus genomes from clinical samples using Oxford Nanopore technology. We applied this method to a small sample of adenovirus-species-F-positive extracts collected as part of standard care in the East of England region in January-May 2022. This method produced genomes with >75 % coverage in 13/22 samples and >50 % coverage in 19/22 samples. We identified two F41 lineages present in paediatric patients in the East of England in 2022. Where F41 genomes from paediatric hepatitis cases were available (n=2), these genomes fell within the diversity of F41 from the UK and continental Europe sequenced before and after the 2020-2021 phase of the COVID-19 pandemic. Our analyses suggest that overlapping amplicon sequencing is an appropriate method for generating F41 genomic data from high-virus-load clinical samples, and currently circulating F41 viral lineages were present in the UK and Europe before the COVID-19 pandemic.


Subject(s)
Adenoviridae Infections , COVID-19 , Humans , Child , COVID-19/epidemiology , Pandemics , Sequence Analysis , Adenoviridae/genetics , Genetic Variation
6.
Viruses ; 15(2)2023 01 18.
Article in English | MEDLINE | ID: covidwho-2200895

ABSTRACT

Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Molecular Epidemiology , Italy/epidemiology , Phylogeography , Genetic Variation
7.
Emerg Microbes Infect ; 12(1): e2164218, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2187798

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Ethiopia/epidemiology , Molecular Epidemiology , Travel , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Zoonoses/epidemiology , Genetic Variation , RNA
8.
Nat Metab ; 4(11): 1430, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2122939
10.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: covidwho-2110897

ABSTRACT

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Phylogeny , Genetic Variation , Sequence Analysis, DNA , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Genomics
11.
PLoS Pathog ; 18(10): e1010636, 2022 10.
Article in English | MEDLINE | ID: covidwho-2079775

ABSTRACT

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Genetic Variation
12.
Int Immunopharmacol ; 111: 109128, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2036144

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Genetic Variation , Humans , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Vaccination
13.
Infect Dis Now ; 52(8S): S2-S3, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2028080

ABSTRACT

SARS CoV 2 S-glycoproteins play a crucial role in the entry steps of viral particles. Due to their surface location, they are the main target for host immune responses and the focus of most vaccine strategies. The D614G mutation identified in late January became dominant during March 2020, rendering SARS-CoV-2 more infectious. In April 2020, the Alpha, Beta and Gamma variants emerged simultaneously in Asia, South Africa, and South America, respectively. They were 1.6 to 2 times more transmissible than the ancestral strain. The currently dominant Omicron variant (BA.2) is not a direct descendant from the D614G lineage, but rather emerged from the BA.1 variant (as did BA.4 and BA.5). It is substantially different from all the other variants. It presents significantly reduced susceptibility to antibody neutralization: after 2 doses of mRNA-vaccine, neutralizing titers to Omicron are 41 to 84 times lower than neutralization titers to D614G. That said, a booster dose of mRNA-vaccine increases Omicron neutralization titers and reduces the risk of severe infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Viral , Vaccine Efficacy , RNA, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Genetic Variation , RNA, Messenger
14.
EMBO Mol Med ; 12(5): e12481, 2020 05 08.
Article in English | MEDLINE | ID: covidwho-2025763

ABSTRACT

The COVID-19 pandemic has spread to many countries around the world, but the infection and death rates vary widely. One country that appeared to have kept the infection under control despite limited societal restrictions is Japan. This commentary explores why Japan may have, up to now, been spared an escalation of the SARS-CoV-2 infections.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , BCG Vaccine/immunology , COVID-19 , Communicable Disease Control , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Culture , Fatty Acids, Monounsaturated , Genetic Variation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Japan/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2
15.
Genome Med ; 14(1): 96, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-2002218

ABSTRACT

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus biology and the host factors that modulate the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased susceptibility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and personalized clinical management. This review aims to provide an overview of our current understanding of the host genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling genes and their potential clinical implications.


Subject(s)
COVID-19 , Antiviral Agents , COVID-19/genetics , Genetic Variation , Humans , Male , Pandemics , SARS-CoV-2
18.
Science ; 377(6609): 960-966, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1962060

ABSTRACT

Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Computer Simulation , Genetic Variation , Genomics/methods , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/virology
19.
Poult Sci ; 101(10): 102076, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956300

ABSTRACT

The avian infectious bronchitis virus (IBV) is a highly mutable coronavirus that causes an acute and highly contagious disease responsible for economic losses to the poultry industry worldwide. Preventing and controlling bronchitis disease is difficulted by the numerous IBV circulating types with limited antigenic cross-protection that hamper the prevention and control by heterologous vaccines. The coding region of the variable spike S1 receptor-attachment domain is used to classify IBV in 7 genotypes (GI-GVII) comprising 35 viral lineages (1-35). Knowledge of the circulating IBV types causing outbreaks in a specific geographic region is beneficial to select better the appropriate vaccine(s) and contribute to disease control. In the study, 17 avian infectious bronchitis virus strains were obtained from chickens showing signs of illness in Mexico from 2007 to 2021. We detected 4 lineages within genotype I, three already known (GI-3, GI-9, GI-13) and one newly described (GI-30). In addition, we identified 2 divergent monophyletic groups that are tentatively described as lineages of new genotypes (GVIII-1 and GIX-1). Our findings revealed that Mexico's high genetic IBV diversity results from the co-circulation of divergent lineages belonging to different genotypes. Mexican IBV lineages differ significantly from Massachusetts and Connecticut vaccine strains, indicating that the currently used vaccines may need to be updated.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genetic Variation , Infectious bronchitis virus/genetics , Mexico/epidemiology , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL