Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Viruses ; 14(2)2022 02 12.
Article in English | MEDLINE | ID: covidwho-1687051

ABSTRACT

The persistent expansion of the coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the rapid development of safe and effective countermeasures to reduce transmission, morbidity, and mortality. Several highly efficacious vaccines are actively being deployed around the globe to expedite mass vaccination and control of COVID-19. Notably, viral vectored vaccines (VVVs) are among the first to be approved for global distribution and use. In this review, we examine the humoral, cellular, and innate immune responses elicited by viral vectors, and the immune correlates of protection against COVID-19 in preclinical and clinical studies. We also discuss the durability and breadth of immune response induced by VVVs and boosters. Finally, we present challenges associated with VVVs and offer solutions for overcoming certain limitations of current vaccine regimens. Collectively, this review provides the rationale for expanding the portfolio of VVVs against SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Genetic Vectors/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Immunization, Secondary , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Vaccines/classification
2.
Viruses ; 14(2)2022 02 06.
Article in English | MEDLINE | ID: covidwho-1674825

ABSTRACT

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Extracellular Vesicles/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , COVID-19/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Humans , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vaccination
3.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1670278

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Emerg Microbes Infect ; 11(1): 438-441, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1662090

ABSTRACT

Mucosal immunity provides a potential for preventing initial infection and stopping subsequent transmission of SARS-CoV-2. Here, we examined the safety and immunogenicity of a replication-defective adenovirus type-5 vectored vaccine (Ad5-nCov) encoding SARS-CoV-2 spike protein delivered by nebulization inhalation in rhesus macaques. The vaccine-associated clinical pathology and toxicity were not observed in the NHP model. The extensive safety study indicated that Ad5-nCoV was mainly confined to the organs related to respiratory system and was rapidly cleared away from the system. Our results showed that Ad5-nCoV delivered by inhalation robustly elicited both systematic and mucosal immune responses against SARS-nCoV-2 and variants. Thus, Ad5-nCoV inhalation may provide an effective, safe and non-invasive vaccination strategy for the control of SARS-CoV-2.


Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Vectors/immunology , Immunity, Mucosal , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Administration, Inhalation , Animals , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Genetic Vectors/genetics , Humans , Immunogenicity, Vaccine , Macaca mulatta , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics
5.
J Virol ; 95(22): e0096621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1561933

ABSTRACT

The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein's function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.


Subject(s)
Genetic Vectors/physiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Cell Line , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Lentivirus/genetics , Mutation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Viral Load/genetics
6.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1457948

ABSTRACT

Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/etiology , Thrombosis/etiology , Adenoviridae/immunology , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Humans , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Spike Glycoprotein, Coronavirus/adverse effects , Thrombocytopenia/immunology , Thrombosis/immunology , Vaccination/adverse effects
7.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1443788

ABSTRACT

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , /immunology , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
8.
Cell ; 184(6): 1589-1603, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1141229

ABSTRACT

Vaccines are critical tools for maintaining global health. Traditional vaccine technologies have been used across a wide range of bacterial and viral pathogens, yet there are a number of examples where they have not been successful, such as for persistent infections, rapidly evolving pathogens with high sequence variability, complex viral antigens, and emerging pathogens. Novel technologies such as nucleic acid and viral vector vaccines offer the potential to revolutionize vaccine development as they are well-suited to address existing technology limitations. In this review, we discuss the current state of RNA vaccines, recombinant adenovirus vector-based vaccines, and advances from biomaterials and engineering that address these important public health challenges.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Adenoviridae/genetics , Animals , Antigens, Viral/genetics , Biocompatible Materials , COVID-19/virology , Drug Delivery Systems/methods , Genetic Vectors/immunology , Humans , Immunogenicity, Vaccine , Liposomes , Nanoparticles , RNA, Messenger/chemical synthesis , RNA, Messenger/immunology
9.
Emerg Microbes Infect ; 10(1): 894-904, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1209882

ABSTRACT

Neutralizing antibodies to SARS-CoV-2 have been shown to correlate with protection in animals and humans, disease severity, survival, and vaccine efficacy. With the ongoing large-scale vaccination in different countries and continuous surge of new variants of global concerns, a convenient, cost-effective and high-throughput neutralization test is urgently needed. Conventional SARS-CoV-2 neutralization test is tedious, time-consuming and requires a biosafety level 3 laboratory. Despite recent reports of neutralizations using different pseudoviruses with a luciferase or green fluorescent protein reporter, the laborious steps, inter-assay variability or high background limit their high-throughput potential. In this study we generated lentivirus-based pseudoviruses containing a monomeric infrared fluorescent protein reporter to develop neutralization assays. Similar tropism, infection kinetics and mechanism of entry through receptor-mediated endocytosis were found in the three pseudoviruses generated. Compared with pseudovirus D614, pseudovirus with D614G mutation had decreased shedding and higher density of S1 protein present on particles. The 50% neutralization titers to pseudoviruses D614 or D614G correlated with the plaque reduction neutralization titers to live SARS-CoV-2. The turn-around time of 48-72 h, minimal autofluorescence, one-step image quantification, expandable to 384-well, sequential readouts and dual quantifications by flow cytometry support its high-throughput and versatile applications at a non-reference and biosafety level 2 laboratory, in particular for assessing the neutralization sensitivity of new variants by sera from natural infection or different vaccinations during our fight against the pandemic.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Ammonium Chloride/pharmacology , Animals , Antigen-Antibody Reactions , Blotting, Western , COVID-19/blood , Chlorocebus aethiops , Convalescence , Defective Viruses/genetics , Genes, Reporter , Genetic Vectors/immunology , HEK293 Cells , HIV-1/genetics , Humans , Immunoglobulin G/immunology , Lentivirus/genetics , Mutagenesis, Site-Directed , Pandemics , Point Mutation , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
10.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: covidwho-1199134

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
12.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1125668

ABSTRACT

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors , Measles virus , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/pathology , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunization , Immunogenicity, Vaccine , Measles virus/genetics , Measles virus/immunology , Mice , Mice, Transgenic , Rats , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/genetics
13.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120219

ABSTRACT

Adenovirus-based gene transfer vectors are the most frequently used vector type in gene therapy clinical trials to date, and they play an important role as genetic vaccine candidates during the ongoing SARS-CoV-2 pandemic. Immediately upon delivery, adenovirus-based vectors exhibit multiple complex vector-host interactions and induce innate and adaptive immune responses. This can severely limit their safety and efficacy, particularly after delivery through the blood stream. In this review article we summarize two strategies to modulate Ad vector-induced immune responses: extensive genomic and chemical capsid modifications. Both strategies have shown beneficial effects in a number of preclinical studies while potential synergistic effects warrant further investigations.


Subject(s)
Adenoviridae/genetics , Adenoviridae/immunology , Capsid/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Animals , COVID-19 , COVID-19 Vaccines/immunology , Capsid Proteins/genetics , Humans , Immunity , Immunogenicity, Vaccine , SARS-CoV-2/genetics , SARS-CoV-2/immunology
14.
Virology ; 557: 70-85, 2021 05.
Article in English | MEDLINE | ID: covidwho-1108783

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into the human population in late 2019 and caused the global COVID-19 pandemic. SARS-CoV-2 has spread to more than 215 countries and infected many millions of people. Despite the introduction of numerous governmental and public health measures to control disease spread, infections continue at an unabated pace, suggesting that effective vaccines and antiviral drugs will be required to curtail disease, end the pandemic, and restore societal norms. Here, we review the current developments in antibody and vaccine countermeasures to limit or prevent disease.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Clinical Trials as Topic , Disease Models, Animal , Genetic Vectors/chemistry , Genetic Vectors/immunology , Humans , Immunity, Innate/drug effects , Immunization, Passive/methods , Immunogenicity, Vaccine , Patient Safety , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Vaccines, Attenuated , Vaccines, DNA , Vaccines, Subunit , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/biosynthesis , Vaccines, Virus-Like Particle/immunology
15.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: covidwho-1102152

ABSTRACT

Current influenza vaccines, live attenuated or inactivated, do not protect against antigenically novel influenza A viruses (IAVs) of pandemic potential, which has driven interest in the development of universal influenza vaccines. Universal influenza vaccine candidates targeting highly conserved antigens of IAV nucleoprotein (NP) are promising as vaccines that induce T cell immunity, but concerns have been raised about the safety of inducing robust CD8 T cell responses in the lungs. Using a mouse model, we systematically evaluated effects of recombinant adenovirus vectors (rAd) expressing IAV NP (A/NP-rAd) or influenza B virus (IBV) NP (B/NP-rAd) on pulmonary inflammation and function after vaccination and following live IAV challenge. After A/NP-rAd or B/NP-rAd vaccination, female mice exhibited robust systemic and pulmonary vaccine-specific B cell and T cell responses and experienced no morbidity (e.g., body mass loss). Both in vivo pulmonary function testing and lung histopathology scoring revealed minimal adverse effects of intranasal rAd vaccination compared with unvaccinated mice. After IAV challenge, A/NP-rAd-vaccinated mice experienced significantly less morbidity, had lower pulmonary virus titers, and developed less pulmonary inflammation than unvaccinated or B/NP-rAd-vaccinated mice. Based on analysis of pulmonary physiology using detailed testing not previously applied to the question of T cell damage, mice protected by vaccination also had better lung function than controls. Results provide evidence that, in this model, adenoviral universal influenza vaccine does not damage pulmonary tissue. In addition, adaptive immunity, in particular, T cell immunity in the lungs, does not cause damage when restimulated but instead mitigates pulmonary damage following IAV infection.IMPORTANCE Respiratory viruses can emerge and spread rapidly before vaccines are available. It would be a tremendous advance to use vaccines that protect against whole categories of viruses, such as universal influenza vaccines, without the need to predict which virus will emerge. The nucleoprotein (NP) of influenza virus provides a target conserved among strains and is a dominant T cell target. In animals, vaccination to NP generates powerful T cell immunity and long-lasting protection against diverse influenza strains. Concerns have been raised, but not evaluated experimentally, that potent local T cell responses might damage the lungs. We analyzed lung function in detail in the setting of such a vaccination. Despite CD8 T cell responses in the lungs, lungs were not damaged and functioned normally after vaccination alone and were protected upon subsequent infection. This precedent provides important support for vaccines based on T cell-mediated protection, currently being considered for both influenza and SARS-CoV-2 vaccines.


Subject(s)
Adenoviridae , Genetic Vectors , Influenza B virus , Influenza Vaccines , Lung , Orthomyxoviridae Infections , Adenoviridae/genetics , Adenoviridae/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Disease Models, Animal , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Immunity, Cellular , Influenza B virus/genetics , Influenza B virus/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , T-Lymphocytes/immunology , T-Lymphocytes/pathology
16.
Science ; 371(6528): 521-526, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1093836

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Subject(s)
Adenoviridae/immunology , Immunogenicity, Vaccine , Mucosal-Associated Invariant T Cells/immunology , Viral Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Genetic Vectors/immunology , Humans , Interferon-alpha/metabolism , Interleukin-18/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
17.
Viruses ; 13(2)2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090286

ABSTRACT

Vaccine development against SARS-CoV-2 has been fierce due to the devastating COVID-19 pandemic and has included all potential approaches for providing the global community with safe and efficient vaccine candidates in the shortest possible timeframe. Viral vectors have played a central role especially using adenovirus-based vectors. Additionally, other viral vectors based on vaccinia viruses, measles viruses, rhabdoviruses, influenza viruses and lentiviruses have been subjected to vaccine development. Self-amplifying RNA virus vectors have been utilized for lipid nanoparticle-based delivery of RNA as COVID-19 vaccines. Several adenovirus-based vaccine candidates have elicited strong immune responses in immunized animals and protection against challenges in mice and primates has been achieved. Moreover, adenovirus-based vaccine candidates have been subjected to phase I to III clinical trials. Recently, the simian adenovirus-based ChAdOx1 vector expressing the SARS-CoV-2 S spike protein was approved for use in humans in the UK.


Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines , COVID-19/prevention & control , Genetic Vectors/immunology , RNA, Viral/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Clinical Trials as Topic , Humans , Mice , Pandemics
18.
Front Immunol ; 11: 602254, 2020.
Article in English | MEDLINE | ID: covidwho-1081589

ABSTRACT

Given the aggressive spread of COVID-19-related deaths, there is an urgent public health need to support the development of vaccine candidates to rapidly improve the available control measures against SARS-CoV-2. To meet this need, we are leveraging our existing vaccine platform to target SARS-CoV-2. Here, we generated cellular heat shock chaperone protein, glycoprotein 96 (gp96), to deliver SARS-CoV-2 protein S (spike) to the immune system and to induce cell-mediated immune responses. We showed that our vaccine platform effectively stimulates a robust cellular immune response against protein S. Moreover, we confirmed that gp96-Ig, secreted from allogeneic cells expressing full-length protein S, generates powerful, protein S polyepitope-specific CD4+ and CD8+ T cell responses in both lung interstitium and airways. These findings were further strengthened by the observation that protein-S -specific CD8+ T cells were induced in human leukocyte antigen HLA-A2.1 transgenic mice thus providing encouraging translational data that the vaccine is likely to work in humans, in the context of SARS-CoV-2 antigen presentation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Lung/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Animals , COVID-19 Vaccines/pharmacology , Genetic Vectors/immunology , Genetic Vectors/pharmacology , Humans , Immunoglobulin G/immunology , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
19.
Nat Med ; 27(2): 279-288, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065913

ABSTRACT

More than 190 vaccines are currently in development to prevent infection by the novel severe acute respiratory syndrome coronavirus 2. Animal studies suggest that while neutralizing antibodies against the viral spike protein may correlate with protection, additional antibody functions may also be important in preventing infection. Previously, we reported early immunogenicity and safety outcomes of a viral vector coronavirus vaccine, ChAdOx1 nCoV-19 (AZD1222), in a single-blinded phase 1/2 randomized controlled trial of healthy adults aged 18-55 years ( NCT04324606 ). Now we describe safety and exploratory humoral and cellular immunogenicity of the vaccine, from subgroups of volunteers in that trial, who were subsequently allocated to receive a homologous full-dose (SD/SD D56; n = 20) or half-dose (SD/LD D56; n = 32) ChAdOx1 booster vaccine 56 d following prime vaccination. Previously reported immunogenicity data from the open-label 28-d interval prime-boost group (SD/SD D28; n = 10) are also presented to facilitate comparison. Additionally, we describe volunteers boosted with the comparator vaccine (MenACWY; n = 10). In this interim report, we demonstrate that a booster dose of ChAdOx1 nCoV-19 is safe and better tolerated than priming doses. Using a systems serology approach we also demonstrate that anti-spike neutralizing antibody titers, as well as Fc-mediated functional antibody responses, including antibody-dependent neutrophil/monocyte phagocytosis, complement activation and natural killer cell activation, are substantially enhanced by a booster dose of vaccine. A booster dose of vaccine induced stronger antibody responses than a dose-sparing half-dose boost, although the magnitude of T cell responses did not increase with either boost dose. These data support the two-dose vaccine regime that is now being evaluated in phase 3 clinical trials.


Subject(s)
Antibody Formation/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunization, Secondary , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Dose-Response Relationship, Drug , Genetic Vectors/immunology , Humans , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
20.
J Immunol ; 206(5): 931-935, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1028951

ABSTRACT

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Vaccination/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Genetic Vectors/immunology , HLA-A2 Antigen/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL