Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
2.
Front Immunol ; 12: 707287, 2021.
Article in English | MEDLINE | ID: covidwho-1359191

ABSTRACT

Background: The outbreak of Coronavirus disease 2019 (COVID-19) has become an international public health crisis, and the number of cases with dengue co-infection has raised concerns. Unfortunately, treatment options are currently limited or even unavailable. Thus, the aim of our study was to explore the underlying mechanisms and identify potential therapeutic targets for co-infection. Methods: To further understand the mechanisms underlying co-infection, we used a series of bioinformatics analyses to build host factor interaction networks and elucidate biological process and molecular function categories, pathway activity, tissue-specific enrichment, and potential therapeutic agents. Results: We explored the pathologic mechanisms of COVID-19 and dengue co-infection, including predisposing genes, significant pathways, biological functions, and possible drugs for intervention. In total, 460 shared host factors were collected; among them, CCL4 and AhR targets were important. To further analyze biological functions, we created a protein-protein interaction (PPI) network and performed Molecular Complex Detection (MCODE) analysis. In addition, common signaling pathways were acquired, and the toll-like receptor and NOD-like receptor signaling pathways exerted a significant effect on the interaction. Upregulated genes were identified based on the activity score of dysregulated genes, such as IL-1, Hippo, and TNF-α. We also conducted tissue-specific enrichment analysis and found ICAM-1 and CCL2 to be highly expressed in the lung. Finally, candidate drugs were screened, including resveratrol, genistein, and dexamethasone. Conclusions: This study probes host factor interaction networks for COVID-19 and dengue and provides potential drugs for clinical practice. Although the findings need to be verified, they contribute to the treatment of co-infection and the management of respiratory disease.


Subject(s)
COVID-19/drug therapy , COVID-19/pathology , Computational Biology/methods , Dengue/drug therapy , Dengue/pathology , Protein Interaction Maps/physiology , Antiviral Agents/therapeutic use , Chemokine CCL2/metabolism , Coinfection , Dengue Virus/drug effects , Dexamethasone/therapeutic use , Gene Expression Regulation/genetics , Genistein/therapeutic use , Humans , Intercellular Adhesion Molecule-1/metabolism , Lung/metabolism , Resveratrol/therapeutic use , SARS-CoV-2/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL