Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
Add filters

Document Type
Year range
1.
PLoS One ; 17(1): e0261014, 2022.
Article in English | MEDLINE | ID: covidwho-1622333

ABSTRACT

High viral transmission in the COVID-19 pandemic has enabled SARS-CoV-2 to acquire new mutations that may impact genome sequencing methods. The ARTIC.v3 primer pool that amplifies short amplicons in a multiplex-PCR reaction is one of the most widely used methods for sequencing the SARS-CoV-2 genome. We observed that some genomic intervals are poorly captured with ARTIC primers. To improve the genomic coverage and variant detection across these intervals, we designed long amplicon primers and evaluated the performance of a short (ARTIC) plus long amplicon (MRL) sequencing approach. Sequencing assays were optimized on VR-1986D-ATCC RNA followed by sequencing of nasopharyngeal swab specimens from fifteen COVID-19 positive patients. ARTIC data covered 94.47% of the virus genome fraction in the positive control and patient samples. Variant analysis in the ARTIC data detected 217 mutations, including 209 single nucleotide variants (SNVs) and eight insertions & deletions. On the other hand, long-amplicon data detected 156 mutations, of which 80% were concordant with ARTIC data. Combined analysis of ARTIC + MRL data improved the genomic coverage to 97.03% and identified 214 high confidence mutations. The combined final set of 214 mutations included 203 SNVs, 8 deletions and 3 insertions. Analysis showed 26 SARS-CoV-2 lineage defining mutations including 4 known variants of concern K417N, E484K, N501Y, P618H in spike gene. Hybrid analysis identified 7 nonsynonymous and 5 synonymous mutations across the genome that were either ambiguous or not called in ARTIC data. For example, G172V mutation in the ORF3a protein and A2A mutation in Membrane protein were missed by the ARTIC assay. Thus, we show that while the short amplicon (ARTIC) assay provides good genomic coverage with high throughput, complementation of poorly captured intervals with long amplicon data can significantly improve SARS-CoV-2 genomic coverage and variant detection.


Subject(s)
Genome, Viral/genetics , Genomics/methods , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , COVID-19/virology , Humans , RNA, Viral/genetics , Sequence Analysis/methods
2.
Antiviral Res ; 197: 105232, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588314

ABSTRACT

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral/drug effects , Methyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , Chick Embryo , Chlorocebus aethiops , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/physiology , Drug Resistance, Viral/drug effects , Genome, Viral/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Lethal Dose 50 , Mice , Protein Biosynthesis/drug effects , RNA, Viral/drug effects , RNA, Viral/metabolism , Rabbits , SARS-CoV-2/genetics , Specific Pathogen-Free Organisms , Transcription, Genetic/drug effects , Vero Cells
3.
Cell Rep ; 38(2): 110205, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588142

ABSTRACT

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Spike Glycoprotein, Coronavirus/genetics , Young Adult
4.
Sci Rep ; 11(1): 24145, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585802

ABSTRACT

Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , COVID-19/transmission , Chiroptera/growth & development , SARS-CoV-2/genetics , Alphacoronavirus/classification , Animals , Asia, Southeastern/epidemiology , Betacoronavirus/classification , COVID-19/epidemiology , COVID-19/virology , Cambodia/epidemiology , Chiroptera/classification , Chiroptera/virology , Epidemics/prevention & control , Evolution, Molecular , Genome, Viral/genetics , Geography , Humans , Longitudinal Studies , Male , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology , Species Specificity
5.
Cells ; 11(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1580991

ABSTRACT

Coronavirus disease (COVID-19) spreads mainly through close contact of infected persons, but the molecular mechanisms underlying its pathogenesis and transmission remain unknown. Here, we propose a statistical physics model to coalesce all molecular entities into a cohesive network in which the roadmap of how each entity mediates the disease can be characterized. We argue that the process of how a transmitter transforms the virus into a recipient constitutes a triad unit that propagates COVID-19 along reticulate paths. Intrinsically, person-to-person transmissibility may be mediated by how genes interact transversely across transmitter, recipient, and viral genomes. We integrate quantitative genetic theory into hypergraph theory to code the main effects of the three genomes as nodes, pairwise cross-genome epistasis as edges, and high-order cross-genome epistasis as hyperedges in a series of mobile hypergraphs. Charting a genome-wide atlas of horizontally epistatic hypergraphs can facilitate the systematic characterization of the community genetic mechanisms underlying COVID-19 spread. This atlas can typically help design effective containment and mitigation strategies and screen and triage those more susceptible persons and those asymptomatic carriers who are incubation virus transmitters.


Subject(s)
COVID-19/transmission , Gene Expression Regulation , Genome, Viral/genetics , Genomics/methods , SARS-CoV-2/genetics , Algorithms , COVID-19/epidemiology , COVID-19/virology , Epistasis, Genetic , Genome-Wide Association Study/methods , Humans , Models, Genetic , Pandemics , SARS-CoV-2/pathogenicity , Virulence/genetics
6.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580429

ABSTRACT

Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.


Subject(s)
COVID-19/veterinary , Dog Diseases/virology , SARS-CoV-2/isolation & purification , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Dog Diseases/diagnosis , Dog Diseases/transmission , Dogs , Female , Genome, Viral/genetics , Pets/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Zoonoses/diagnosis , Viral Zoonoses/transmission , Viral Zoonoses/virology
7.
PLoS One ; 16(3): e0243265, 2021.
Article in English | MEDLINE | ID: covidwho-1576038

ABSTRACT

Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) which causes corona virus disease (COVID-19) was first identified in Wuhan, China in December 2019 and has since led to a global pandemic. Importations of SARS-CoV-2 to Israel in late February from multiple countries initiated a rapid outbreak across the country. In this study, SARS-CoV-2 whole genomes were sequenced from 59 imported samples with a recorded country of importation and 101 early circulating samples in February to mid-March 2020 and analyzed to infer clades and mutational patterns with additional sequences identified Israel available in public databases. Recorded importations in February to mid-March, mostly from Europe, led to multiple transmissions in all districts in Israel. Although all SARS-CoV-2 defined clades were imported, clade 20C became the dominating clade in the circulating samples. Identification of novel, frequently altered mutated positions correlating with clade-defining positions provide data for surveillance of this evolving pandemic and spread of specific clades of this virus. SARS-CoV-2 continues to spread and mutate in Israel and across the globe. With economy and travel resuming, surveillance of clades and accumulating mutations is crucial for understanding its evolution and spread patterns and may aid in decision making concerning public health issues.


Subject(s)
COVID-19/pathology , Genetic Variation , Genome, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing , Humans , Israel/epidemiology , Mutation , SARS-CoV-2/isolation & purification
8.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: covidwho-1574813

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
9.
Viruses ; 13(12)2021 12 10.
Article in English | MEDLINE | ID: covidwho-1572657

ABSTRACT

The current COVID-19 pandemic demands massive testing by Real-time RT-PCR (Reverse Transcription Polymerase Chain Reaction), which is considered the gold standard diagnostic test for the detection of the SARS-CoV-2 virus. However, the virus continues to evolve with mutations that lead to phenotypic alterations as higher transmissibility, pathogenicity or vaccine evasion. Another big issue are mutations in the annealing sites of primers and probes of RT-PCR diagnostic kits leading to false-negative results. Therefore, here we identify mutations in the N (Nucleocapsid) gene that affects the use of the GeneFinder COVID-19 Plus RealAmp Kit. We sequenced SARS-CoV-2 genomes from 17 positive samples with no N gene detection but with RDRP (RNA-dependent RNA polymerase) and E (Envelope) genes detection, and observed a set of three different mutations affecting the N detection: a deletion of 18 nucleotides (Del28877-28894), a substitution of GGG to AAC (28881-28883) and a frameshift mutation caused by deletion (Del28877-28878). The last one cause a deletion of six AAs (amino acids) located in the central intrinsic disorder region at protein level. We also found this mutation in 99 of the 14,346 sequenced samples by the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants, demonstrating the circulation of the mutation in Sao Paulo, Brazil. Continuous monitoring and characterization of mutations affecting the annealing sites of primers and probes by genomic surveillance programs are necessary to maintain the effectiveness of the diagnosis of COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/isolation & purification , Brazil/epidemiology , COVID-19/epidemiology , Coronavirus RNA-Dependent RNA Polymerase/genetics , DNA Primers , False Negative Reactions , Genome, Viral/genetics , Humans , Mutation , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
10.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554804

ABSTRACT

In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.


Subject(s)
MicroRNAs/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , COVID-19/genetics , Computational Biology/methods , DNA Viruses/genetics , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , RNA, Viral/genetics , Sequence Homology
11.
J Med Virol ; 94(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544348

ABSTRACT

The outbreak of the current coronavirus disease (COVID-19) occurred in late 2019 and quickly spread all over the world. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to a genetically diverse group that mutates continuously leading to the emergence of multiple variants. Although a few antiviral agents and anti-inflammatory medicines are available, thousands of individuals have passed away due to emergence of new viral variants. Thus, proper surveillance of the SARS-CoV-2 genome is needed for the rapid identification of developing mutations over time, which are of the major concern if they occur specifically in the surface spike proteins of the virus (neutralizing analyte). This article reviews the potential mutations acquired by the SARS-CoV2 since the pandemic began and their significant impact on the neutralizing efficiency of vaccines and validity of the diagnostic assays.


Subject(s)
COVID-19/epidemiology , Genetic Drift , Genome, Viral/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Gene Frequency/genetics , Genetic Variation/genetics , Humans , Immunogenicity, Vaccine/immunology , Spike Glycoprotein, Coronavirus/genetics
12.
J Med Virol ; 93(12): 6828-6832, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544316

ABSTRACT

A cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections was found in a cargo ship under repair in Zhoushan, China. Twelve of 20 crew members were identified as SARS-CoV-2 positive. We analyzed four sequences and identified them all in the Delta branch emerging from India with 7-8 amino acid mutation sites in the spike protein.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , China , Genome, Viral/genetics , Humans , India , Phylogeny , Sequence Analysis/methods , Ships/methods , Spike Glycoprotein, Coronavirus/genetics
13.
J Med Virol ; 93(12): 6525-6534, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544299

ABSTRACT

By analyzing newly collected SARS-CoV-2 genomes and comparing them with our previous study about SARS-CoV-2 single nucleotide variants (SNVs) before June 2020, we found that the SNV clustering had changed remarkably since June 2020. Apart from that the group of SNVs became dominant, which is represented by two nonsynonymous mutations A23403G (S:D614G) and C14408T (ORF1ab:P4715L), a few emerging groups of SNVs were recognized with sharply increased monthly incidence ratios of up to 70% in November 2020. Further investigation revealed sets of SNVs specific to patients' ages and/or gender, or strongly associated with mortality. Our logistic regression model explored features contributing to mortality status, including three critical SNVs, G25088T(S:V1176F), T27484C (ORF7a:L31L), and T25A (upstream of ORF1ab), ages above 40 years old, and the male gender. The protein structure analysis indicated that the emerging subgroups of nonsynonymous SNVs and the mortality-related ones were located on the protein surface area. The clashes in protein structure introduced by these mutations might in turn affect the viral pathogenesis through the alteration of protein conformation, leading to a difference in transmission and virulence. Particularly, we explored the fact that nonsynonymous SNVs tended to occur in intrinsic disordered regions of Spike and ORF1ab to significantly increase hydrophobicity, suggesting a potential role in the change of protein folding related to immune evasion.


Subject(s)
COVID-19/mortality , Genome, Viral/genetics , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Male , Middle Aged , Mutation , Polyproteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , Virulence/genetics , Young Adult
14.
J Med Virol ; 93(12): 6479-6485, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1530178

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in early December 2019 has rapidly widespread worldwide. Over the course of the pandemic, due to the advance of whole-genome sequencing technologies, an unprecedented number of genomes have been generated, providing both invaluable insights into the ongoing evolution and epidemiology of the virus and allowing the identification of hundreds of circulating genetic variants during the pandemic. In recent months variants of SARS-CoV-2 that have an increased number of mutations on the Spike protein have brought concern all over the world. These have been called "variants of concerns" (VOCs), and/or "variants of interests" (VOIs) as it has been suggested that their genome mutations might impact transmission, immune control, and virulence. Tracking the spread of emerging SARS-CoV-2 variants is crucial to inform public health efforts and control the ongoing pandemic. In this review, a concise characterization of the SARS-CoV-2 mutational patterns of the main VOCs and VOIs circulating and cocirculating worldwide has been presented to determine the magnitude of the SARS-CoV-2 threat to better understand the virus genetic diversity and its potential impact on vaccination strategy.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology , China/epidemiology , Evolution, Molecular , Genome, Viral/genetics , Humans , Mutation , Mutation Rate , Phylogeny , Spike Glycoprotein, Coronavirus/immunology , Whole Genome Sequencing
15.
Microbiol Spectr ; 9(2): e0081621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1526453

ABSTRACT

Reverse transcription-PCRs (RT-PCRs) targeting SARS-CoV-2 variant of concern (VOC) mutations have been developed to simplify their tracking. We evaluated an assay targeting E484K/N501Y to identify B.1.351/P1. Whole-genome sequencing (WGS) confirmed only 72 (59.02%) of 122 consecutive RT-PCR P.1/B.1.351 candidates. Prescreening RT-PCRs must target a wider set of mutations, updated from WGS data from emerging variants.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Diagnostic Errors/statistics & numerical data , Genome, Viral/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , Whole Genome Sequencing
16.
J Med Virol ; 94(2): 521-530, 2022 02.
Article in English | MEDLINE | ID: covidwho-1508796

ABSTRACT

Measles is one of the most infectious diseases of humans. It is caused by the measles virus (MeV) and can lead to serious illness, lifelong complications, and even death. Whole-genome sequencing (WGS) is now available to study molecular epidemiology and identify MeV transmission pathways. In the present study, WGS of 23 MeV strains of genotype H1, collected in Mainland China between 2006 and 2018, were generated and compared to 31 WGSs from the public domain to analyze genomic characteristics, evolutionary rates and date of emergence of H1 genotype. The noncoding region between M and F protein genes (M/F NCR) was the most variable region throughout the genome. Although the nucleotide substitution rate of H1 WGS was around 0.75 × 10-3 substitution per site per year, the M/F NCR had an evolutionary rate three times higher, with 2.44 × 10-3 substitution per site per year. Phylogenetic analysis identified three distinct genetic groups. The Time of the Most Recent Common Ancestor (TMRCA) of H1 genotype was estimated at approximately 1988, while the first genetic group appeared around 1995 followed by two other genetic groups in 1999-2002. Bayesian skyline plot showed that the genetic diversity of the H1 genotype remained stable even though the number of MeV cases decreased 50 times between 2014 (52 628) and 2020 (993). The current coronavirus disease 2019 (COVID-19) pandemic might have some effect on the measles epidemic and further studies will be necessary to assess the genetic diversity of the H1 genotype in a post-COVID area.


Subject(s)
Evolution, Molecular , Genome, Viral/genetics , Measles virus/genetics , China/epidemiology , Genes, Viral/genetics , Genetic Variation , Genomics , Genotype , Humans , Measles/epidemiology , Measles/virology , Measles virus/classification , Phylogeny , RNA, Viral/genetics
17.
Virus Res ; 307: 198618, 2022 01 02.
Article in English | MEDLINE | ID: covidwho-1504602

ABSTRACT

The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.


Subject(s)
Coronavirus 3C Proteases/genetics , Protein Folding , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Brazil , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Virulence/genetics
18.
Clin Microbiol Rev ; 34(3)2021 06 16.
Article in English | MEDLINE | ID: covidwho-1501523

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnostic imaging , COVID-19/diagnosis , SARS-CoV-2/genetics , Biosensing Techniques , Genome, Viral/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , SARS-CoV-2/immunology , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...