Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add filters

Document Type
Year range
1.
Epidemiol Infect ; 150: e14, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1627666

ABSTRACT

Vulnerability to coronavirus disease (COVID)-19 varies due to differences in interferon gamma (IFNγ) immunity. We investigated whether a key modifiable interferon precursor, interleukin-18, was related to COVID-19, overall and by severity, using Mendelian randomisation. We used four established genome-wide significant genetic predictors of interleukin-18 applied to the most recent genome-wide association study of COVID-19 (June 2021) to obtain Mendelian randomisation inverse variance weighted estimates by severity, i.e. any (cases = 112 612, non-cases = 2 474 079), hospitalised (cases = 24 274, non-cases = 2 061 529) and very severe (cases = 8779, non-cases = 1 001 875) COVID-19. To be comprehensive, we also conducted an exploratory analysis for IFNγ and two related cytokines with less well-established genetic predictors, i.e. interleukin-12 and interleukin-23. Genetically predicted interleukin-18 was associated with lower risk of any COVID-19 (odds ratio (OR) 0.96 per standard deviation, 95% confidence interval (0.94-0.99, P-value 0.004)) and of very severe COVID-19 (OR 0.88, 95% CI 0.78-0.999, P-value 0.048). Sensitivity analysis and a more liberal genetic instrument selection gave largely similar results. Few genome-wide significant genetic predictors were available for IFNγ, interleukin-12 or interleukin-23, and no associations with COVID-19 were evident. Interleukin-18 could be a modifiable target to prevent COVID-19 and should be further explored in an experimental design.


Subject(s)
COVID-19/genetics , Interleukin-18/genetics , COVID-19/pathology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Odds Ratio , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index
2.
BMC Genomics ; 22(1): 912, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1577274

ABSTRACT

BACKGROUND: The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS: A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION: With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.


Subject(s)
Influenza, Human , Genome-Wide Association Study , Humans , Influenza, Human/genetics
3.
J Transl Med ; 19(1): 528, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1582053

ABSTRACT

BACKGROUND: Emerging evidence shows that periodontal disease (PD) may increase the risk of Coronavirus disease 2019 (COVID-19) complications. Here, we undertook a two-sample Mendelian randomization (MR) study, and investigated for the first time the possible causal impact of PD on host susceptibility to COVID-19 and its severity. METHODS: Summary statistics of COVID-19 susceptibility and severity were retrieved from the COVID-19 Host Genetics Initiative and used as outcomes. Single nucleotide polymorphisms associated with PD in Genome-wide association study were included as exposure. Inverse-variance weighted (IVW) method was employed as the main approach to analyze the causal relationships between PD and COVID-19. Three additional methods were adopted, allowing the existence of horizontal pleiotropy, including MR-Egger regression, weighted median and weighted mode methods. Comprehensive sensitivity analyses were also conducted for estimating the robustness of the identified associations. RESULTS: The MR estimates showed that PD was significantly associated with significantly higher susceptibility to COVID-19 using IVW (OR = 1.024, P = 0.017, 95% CI 1.004-1.045) and weighted median method (OR = 1.029, P = 0.024, 95% CI 1.003-1.055). Furthermore, it revealed that PD was significantly linked to COVID-19 severity based on the comparison of hospitalization versus population controls (IVW, OR = 1.025, P = 0.039, 95% CI 1.001-1.049; weighted median, OR = 1.030, P = 0.027, 95% CI 1.003-1.058). No such association was observed in the cohort of highly severe cases confirmed versus those not hospitalized due to COVID-19. CONCLUSIONS: We provide evidence on the possible causality of PD accounting for the susceptibility and severity of COVID-19, highlighting the importance of oral/periodontal healthcare for general wellbeing during the pandemic and beyond.


Subject(s)
COVID-19 , Periodontal Diseases , COVID-19/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Periodontal Diseases/complications , Periodontal Diseases/genetics , Polymorphism, Single Nucleotide
4.
Cells ; 10(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572377

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic has caused millions of deaths worldwide. Early risk assessment of COVID-19 cases can help direct early treatment measures that have been shown to improve the prognosis of severe cases. Currently, circulating miRNAs have not been evaluated as canonical COVID-19 biomarkers, and identifying biomarkers that have a causal relationship with COVID-19 is imperative. To bridge these gaps, we aim to examine the causal effects of miRNAs on COVID-19 severity in this study using two-sample Mendelian randomization approaches. Multiple studies with available GWAS summary statistics data were retrieved. Using circulating miRNA expression data as exposure, and severe COVID-19 cases as outcomes, we identified ten unique miRNAs that showed causality across three phenotype groups of COVID-19. Using expression data from an independent study, we validated and identified two high-confidence miRNAs, namely, hsa-miR-30a-3p and hsa-miR-139-5p, which have putative causal effects on developing cases of severe COVID-19. Using existing literature and publicly available databases, the potential causative roles of these miRNAs were investigated. This study provides a novel way of utilizing miRNA eQTL data to help us identify potential miRNA biomarkers to make better and early diagnoses and risk assessments of severe COVID-19 cases.


Subject(s)
COVID-19/genetics , Circulating MicroRNA/genetics , MicroRNAs/genetics , Patient Acuity , SARS-CoV-2/genetics , Biomarkers/blood , COVID-19/blood , Circulating MicroRNA/blood , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , MicroRNAs/blood , SARS-CoV-2/metabolism
6.
BMC Med Genomics ; 14(1): 269, 2021 11 13.
Article in English | MEDLINE | ID: covidwho-1515444

ABSTRACT

BACKGROUND: As the number of COVID-19 deaths continues to rise worldwide, the identification of risk factors for the disease is an urgent issue, and it remains controversial whether atherogenic lipid-related traits including serum apolipoprotein B, low-density lipoprotein (LDL)-cholesterol, and triglyceride levels, are risk factors. The aim of this study was to estimate causal effects of lipid-related traits on COVID-19 risk in the European population using a two-sample Mendelian randomization (MR) approach. METHODS: We used summary statistics from a genome-wide association study (GWAS) that included 441,016 participants from the UK Biobank as the exposure dataset of lipid-related traits and from COVID-19 Host Genetics Initiative GWAS meta-analyses of European ancestry as the outcome dataset for COVID-19 susceptibility (32,494 cases and 1,316,207 controls), hospitalization (8316 cases and 1,549,095 controls), and severity (4792 cases and 1,054,664 controls). We performed two-sample MR analyses using the inverse variance weighted (IVW) method. As sensitivity analyses, the MR-Egger regression, weighted median, and weighted mode methods were conducted as were leave-one-out sensitivity analysis, the MR-PRESSO global test, PhenoScanner searches, and IVW multivariable MR analyses. A P value below 0.0055 with Bonferroni correction was considered statistically significant. RESULTS: This MR study suggested that serum apolipoprotein B or LDL-cholesterol levels were not significantly associated with COVID-19 risk. On the other hand, we inferred that higher serum triglyceride levels were suggestively associated with higher risks of COVID-19 susceptibility (odds ratio [OR] per standard deviation increase in lifelong triglyceride levels, 1.065; 95% confidence interval [CI], 1.001-1.13; P = 0.045) and hospitalization (OR, 1.174; 95% CI, 1.04-1.33; P = 0.012), and were significantly associated with COVID-19 severity (OR, 1.274; 95% CI, 1.08-1.50; P = 0.004). Sensitivity and bidirectional MR analyses suggested that horizontal pleiotropy and reverse causation were unlikely. CONCLUSIONS: Our MR study indicates a causal effect of higher serum triglyceride levels on a greater risk of COVID-19 severity in the European population using the latest and largest GWAS datasets to date. However, as the underlying mechanisms remain unclear and our study might be still biased due to possible horizontal pleiotropy, further studies are warranted to validate our findings and investigate underlying mechanisms.


Subject(s)
Apolipoprotein B-100 , COVID-19 , Cholesterol, LDL , Genetic Predisposition to Disease , Quantitative Trait, Heritable , SARS-CoV-2/metabolism , Triglycerides , Apolipoprotein B-100/blood , Apolipoprotein B-100/genetics , COVID-19/blood , COVID-19/genetics , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Risk Factors , Severity of Illness Index , Triglycerides/blood , Triglycerides/genetics
7.
BMC Nephrol ; 22(1): 381, 2021 11 13.
Article in English | MEDLINE | ID: covidwho-1515439

ABSTRACT

BACKGROUND: Kidney dysfunction occurs in severe COVID-19, and is a predictor of COVID-19 mortality. Whether kidney dysfunction causes severe COVID-19, and hence is a target of intervention, or whether it is a symptom, is unclear because conventional observational studies are open to confounding. To obtain unconfounded estimates, we used Mendelian randomization to examine the role of kidney function in severe COVID-19. METHODS: We used genome-wide significant, uncorrelated genetic variants to predict kidney function, in terms of estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), and then assessed whether people with genetically instrumented higher eGFR or lower UACR, an indication of better kidney function, had a lower risk of severe COVID-19 (8779 cases, 1,001,875 controls), using the largest available cohorts with extensive genotyping. For comprehensiveness, we also examined their role in COVID-19 hospitalization (24,274 cases, 2,061,529 controls) and all COVID-19 (1,12,612 cases, 2,474,079 controls). RESULTS: Genetically instrumented higher eGFR was associated with lower risk of severe COVID-19 (odds ratio (OR) 0.90, 95% confidence interval (CI) 0.83, 0.98) but not related to COVID-19 hospitalization or infection. Genetically instrumented UACR was not related to COVID-19. CONCLUSIONS: Kidney function appears to be one of the key targets for severe COVID-19 treatment. Use of available medications to improve kidney function, such as antihypertensives, might be beneficial for COVID-19 treatment, with relevance to drug repositioning.


Subject(s)
COVID-19/complications , COVID-19/genetics , Glomerular Filtration Rate/genetics , Kidney/physiopathology , Patient Acuity , Albuminuria/urine , Case-Control Studies , Creatinine/urine , Genetic Variation , Genome-Wide Association Study , Hospitalization , Humans , Mendelian Randomization Analysis , Risk Factors , SARS-CoV-2 , /genetics
8.
J Am Heart Assoc ; 10(22): e022433, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1511553

ABSTRACT

Background The relationship between COVID-19 and ischemic stroke is poorly understood due to potential unmeasured confounding and reverse causation. We aimed to leverage genetic data to triangulate reported associations. Methods and Results Analyses primarily focused on critical COVID-19, defined as hospitalization with COVID-19 requiring respiratory support or resulting in death. Cross-trait linkage disequilibrium score regression was used to estimate genetic correlations of critical COVID-19 with ischemic stroke, other related cardiovascular outcomes, and risk factors common to both COVID-19 and cardiovascular disease (body mass index, smoking and chronic inflammation, estimated using C-reactive protein). Mendelian randomization analysis was performed to investigate whether liability to critical COVID-19 was associated with increased risk of any cardiovascular outcome for which genetic correlation was identified. There was evidence of genetic correlation between critical COVID-19 and ischemic stroke (rg=0.29, false discovery rate [FDR]=0.012), body mass index (rg=0.21, FDR=0.00002), and C-reactive protein (rg=0.20, FDR=0.00035), but no other trait investigated. In Mendelian randomization, liability to critical COVID-19 was associated with increased risk of ischemic stroke (odds ratio [OR] per logOR increase in genetically predicted critical COVID-19 liability 1.03, 95% CI 1.00-1.06, P-value=0.03). Similar estimates were obtained for ischemic stroke subtypes. Consistent estimates were also obtained when performing statistical sensitivity analyses more robust to the inclusion of pleiotropic variants, including multivariable Mendelian randomization analyses adjusting for potential genetic confounding through body mass index, smoking, and chronic inflammation. There was no evidence to suggest that genetic liability to ischemic stroke increased the risk of critical COVID-19. Conclusions These data support that liability to critical COVID-19 is associated with an increased risk of ischemic stroke. The host response predisposing to severe COVID-19 is likely to increase the risk of ischemic stroke, independent of other potentially mitigating risk factors.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Body Mass Index , Brain Ischemia/epidemiology , Brain Ischemia/genetics , Brain Ischemia/virology , C-Reactive Protein , COVID-19/epidemiology , Genome-Wide Association Study , Humans , Inflammation , Ischemic Stroke/epidemiology , Ischemic Stroke/genetics , Ischemic Stroke/virology , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors , Smoking
9.
Cell Rep ; 37(7): 110020, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1509641

ABSTRACT

Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Chromosome Mapping/methods , Computational Biology/methods , Databases, Genetic , Gene Expression/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Organ Specificity/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , Transcriptome/genetics
10.
Nat Genet ; 53(11): 1606-1615, 2021 11.
Article in English | MEDLINE | ID: covidwho-1503871

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Subject(s)
COVID-19/complications , Chromosomes, Human, Pair 3/genetics , Epithelial-Mesenchymal Transition , Lung/virology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcription Factors/genetics , COVID-19/transmission , COVID-19/virology , Case-Control Studies , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Genome-Wide Association Study , Humans , Lung/metabolism , Lung/pathology , Male , Transcription Factors/metabolism
11.
Nat Med ; 27(6): 1012-1024, 2021 06.
Article in English | MEDLINE | ID: covidwho-1472229

ABSTRACT

Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 × 10-7), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 × 10-28), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 × 10-15), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 × 10-9) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 × 10-4). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.


Subject(s)
Aging/genetics , Communicable Diseases/genetics , Pneumonia/genetics , Sepsis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Biological Specimen Banks , Chromosome Aberrations , Communicable Diseases/complications , Communicable Diseases/microbiology , Digestive System Diseases/epidemiology , Digestive System Diseases/genetics , Digestive System Diseases/microbiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Hematologic Neoplasms/complications , Hematologic Neoplasms/genetics , Hematologic Neoplasms/microbiology , Humans , Male , Middle Aged , Mosaicism , Pneumonia/epidemiology , Pneumonia/microbiology , Risk Factors , Sepsis/epidemiology , Sepsis/microbiology , Urogenital Abnormalities/epidemiology , Urogenital Abnormalities/genetics , Urogenital Abnormalities/microbiology , Young Adult
12.
Theor Appl Genet ; 134(9): 3083-3109, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1453686

ABSTRACT

KEY MESSAGE: Based on the large-scale integration of meta-QTL and Genome-Wide  Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.


Subject(s)
Chromosomes, Plant/genetics , Edible Grain/genetics , Genome, Plant , Genome-Wide Association Study , Plant Proteins/metabolism , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping/methods , Edible Grain/growth & development , Gene Expression Regulation, Plant , Phenotype , Plant Breeding , Plant Proteins/genetics , Triticum/growth & development
13.
Syst Rev ; 9(1): 200, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-1456001

ABSTRACT

BACKGROUND: The burden of opioid use disorder (OUD) has been increasing in North America. Administration of medication-assisted treatments (MATs) for OUD on an individual-dose basis has been shown to affect patient responses to treatment, proving to be, on occasion, dangerous. A genetic basis has been identified for some MAT responses in a candidate gene context, but consensus has not been reached for any genome-wide significant associations. This systematic review aims to identify and assess any genetic variants associated with MAT patient outcomes at genome-wide significance. METHODS: The databases searched by the authors will be: MEDLINE, Web of Science, EMBASE, CINAHL and Pre-CINAHL, GWAS Catalog, GWAS Central, and NIH Database of Genotypes and Phenotypes. A title and abstract screening, full-text screening, data extraction, and quality assessment will be completed in duplicate for each study via Covidence. Treatment outcomes of interest include continued opioid use or abstinence during treatment or at follow-up, time to relapse, treatment retention rates, opioid overdose, other substance use, comorbid psychiatric disorders, risk taking behaviors, MAT plasma concentrations, and mortality rates. Analysis methods applied, if appropriate, will include random effects meta-analysis with pooled odds ratios for all outcomes. Subgroup analyses will also be implemented, when possible. DISCUSSION: This systematic review can hopefully inform the direction of future research, aiding in the development of a safer and more patient-centered treatment. It will be able to highlight genome-wide significant variants that are replicable and associated with MAT patient outcomes. SYSTEMATIC REVIEW REGISTRATION: This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) (registration ID CRD42020169121).


Subject(s)
Analgesics, Opioid , Genome-Wide Association Study , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Humans , Meta-Analysis as Topic , North America , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/genetics , Systematic Reviews as Topic , Treatment Outcome
14.
BMJ Open ; 11(9): e052842, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1448019

ABSTRACT

INTRODUCTION: There is considerable variability in symptoms and severity of COVID-19 among patients infected by the SARS-CoV-2 virus. Linking host and virus genome sequence information to antibody response and biological information may identify patient or viral characteristics associated with poor and favourable outcomes. This study aims to (1) identify characteristics of the antibody response that result in maintained immune response and better outcomes, (2) determine the impact of genetic differences on infection severity and immune response, (3) determine the impact of viral lineage on antibody response and patient outcomes and (4) evaluate patient-reported outcomes of receiving host genome, antibody and viral lineage results. METHODS AND ANALYSIS: A prospective, observational cohort study is being conducted among adult patients with COVID-19 in the Greater Toronto Area. Blood samples are collected at baseline (during infection) and 1, 6 and 12 months after diagnosis. Serial antibody titres, isotype, antigen target and viral neutralisation will be assessed. Clinical data will be collected from chart reviews and patient surveys. Host genomes and T-cell and B-cell receptors will be sequenced. Viral genomes will be sequenced to identify viral lineage. Regression models will be used to test associations between antibody response, physiological response, genetic markers and patient outcomes. Pathogenic genomic variants related to disease severity, or negative outcomes will be identified and genome wide association will be conducted. Immune repertoire diversity during infection will be correlated with severity of COVID-19 symptoms and human leucocyte antigen-type associated with SARS-CoV-2 infection. Participants can learn their genome sequencing, antibody and viral sequencing results; patient-reported outcomes of receiving this information will be assessed through surveys and qualitative interviews. ETHICS AND DISSEMINATION: This study was approved by Clinical Trials Ontario Streamlined Ethics Review System (CTO Project ID: 3302) and the research ethics boards at participating hospitals. Study findings will be disseminated through peer-reviewed publications, conference presentations and end-users.


Subject(s)
COVID-19 , Genome-Wide Association Study , Humans , Observational Studies as Topic , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
15.
Curr Opin Pediatr ; 33(6): 549-555, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1429359

ABSTRACT

PURPOSE OF REVIEW: This review is meant to describe the genetic associations with pediatric severe COVID-19 pneumonia and the postinfectious complication of the multisystem inflammatory syndrome in children (MIS-C). Multiple genetic approaches have been carried out, primarily in adults with extrapolation to children, including genome-wide association studies (GWAS), whole exome and whole genome sequencing (WES/WGS), and target gene analyses. RECENT FINDINGS: Data from adults with severe COVID-19 have identified genomic regions (human leukocyte antigen locus and 3p21.31) as potential risk factors. Genes related to viral entry into cells (ABO blood group locus, ACE2, TMPRS22) have been linked to severe COVID-19 patients by GWAS and target gene approaches. Type I interferon (e.g. IFNAR2) and antiviral gene (e.g. TLR7) associations have been identified by several genetic approaches in severe COVID-19. WES has noted associations with several immune regulatory genes (e.g. SOCS1). Target gene approaches have identified mutations in perforin-mediated cytolytic pathway genes in children and adults with severe COVID-19 and children with MIS-C. SUMMARY: Several genetic associations have been identified in individuals with severe COVID-19 and MIS-C via various genetic approaches. Broadly speaking, COVID-19 genetic associations include genes involved with antiviral functions, viral cell entry, immune regulation, chemotaxis of white blood cells, and lymphocyte cytolytic function.


Subject(s)
COVID-19 , Systemic Inflammatory Response Syndrome/genetics , COVID-19/complications , COVID-19/genetics , Child , Genome-Wide Association Study , Humans
16.
Gene ; 808: 145963, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1415409

ABSTRACT

As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , COVID-19/physiopathology , Computational Biology/methods , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Genome-Wide Association Study , Host Microbial Interactions/physiology , Host-Pathogen Interactions/genetics , Humans , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
17.
Nat Genet ; 53(9): 1271, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406394
18.
Commun Biol ; 4(1): 1034, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1380915

ABSTRACT

COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.


Subject(s)
COVID-19/ethnology , COVID-19/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Humans , Introns/genetics , Polymorphism, Single Nucleotide
19.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374426

ABSTRACT

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/genetics , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules/metabolism , Datasets as Topic , Dendritic Cells/metabolism , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Lectins, C-Type/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mendelian Randomization Analysis , Nasopharynx/immunology , Nasopharynx/pathology , Nasopharynx/virology , RNA-Seq , Receptors, Cell Surface/metabolism , Severity of Illness Index , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...