Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 96(7): e0005722, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1759284

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Subject(s)
COVID-19 , Heparin/analogs & derivatives , COVID-19/drug therapy , Cell Line , Cytokines/metabolism , Fenofibrate , Gene Knockdown Techniques , Glucuronidase/genetics , Glucuronidase/metabolism , Heparin/therapeutic use , Humans , Immunity/drug effects , Inflammation , Macrophages/drug effects , Macrophages/immunology , NF-kappa B , SARS-CoV-2
2.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611203

ABSTRACT

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Forsythia/chemistry , Monoterpenes/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Forsythia/metabolism , Fruit/chemistry , Fruit/metabolism , Glucuronidase/metabolism , Influenza A Virus, H1N1 Subtype/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/pharmacology , Rats , Respiratory Syncytial Viruses/drug effects
3.
Chemistry ; 28(11): e202104222, 2022 Feb 19.
Article in English | MEDLINE | ID: covidwho-1604266

ABSTRACT

Pixatimod (PG545), a heparan sulfate (HS) mimetic and anticancer agent currently in clinical trials, is a potent inhibitor of heparanase. Heparanase is an endo-ß-glucuronidase that degrades HS in the extracellular matrix and basement membranes and is implicated in numerous pathological processes such as cancer and viral infections, including SARS-CoV-2. To understand how PG545 interacts with heparanase, we firstly carried out a conformational analysis through a combination of NMR experiments and molecular modelling which showed that the reducing end ß-D-glucose residue of PG545 adopts a distorted conformation. This was followed by docking and molecular dynamics simulations to study the interactions of PG545 with heparanase, revealing that PG545 is able to block the active site by binding in different conformations, with the cholestanol side-chain making important hydrophobic interactions. While PG545 blocks its natural substrate HS from binding to the active site, small synthetic heparanase substrates are only partially excluded, and thus pentasaccharide or larger substrates are preferred for assaying this class of inhibitor. This study provides new insights for the design of next-generation heparanase inhibitors and substrates.


Subject(s)
COVID-19 , Neoplasms , Virus Diseases , Glucuronidase/metabolism , Heparitin Sulfate/pharmacology , Humans , Neoplasms/drug therapy , SARS-CoV-2
4.
PLoS One ; 16(10): e0258856, 2021.
Article in English | MEDLINE | ID: covidwho-1542176

ABSTRACT

Hypoxia is a common pathway to the progression of end-stage kidney disease. Retinoic acid-inducible gene I (RIG-I) encodes an RNA helicase that recognizes viruses including SARS-CoV2, which is responsible for the production of interferon (IFN)-α/ß to prevent the spread of viral infection. Recently, RIG-I activation was found under hypoxic conditions, and klotho deficiency was shown to intensify the activation of RIG-I in mouse brains. However, the roles of these functions in renal inflammation remain elusive. Here, for in vitro study, the expression of RIG-I and IFN-α/ß was examined in normal rat kidney (NRK)-52E cells incubated under hypoxic conditions (1% O2). Next, siRNA targeting RIG-I or scramble siRNA was transfected into NRK52E cells to examine the expression of RIG-I and IFN-α/ß under hypoxic conditions. We also investigated the expression levels of RIG-I and IFN-α/ß in 33 human kidney biopsy samples diagnosed with IgA nephropathy. For in vivo study, we induced renal hypoxia by clamping the renal artery for 10 min in wild-type mice (WT mice) and Klotho-knockout mice (Kl-/- mice). Incubation under hypoxic conditions increased the expression of RIG-I and IFN-α/ß in NRK52E cells. Their upregulation was inhibited in NRK52E cells transfected with siRNA targeting RIG-I. In patients with IgA nephropathy, immunohistochemical staining of renal biopsy samples revealed that the expression of RIG-I was correlated with that of IFN-α/ß (r = 0.57, P<0.001, and r = 0.81, P<0.001, respectively). The expression levels of RIG-I and IFN-α/ß were upregulated in kidneys of hypoxic WT mice and further upregulation was observed in hypoxic Kl-/- mice. These findings suggest that hypoxia induces the expression of IFN-α/ß through the upregulation of RIG-I, and that klotho deficiency intensifies this hypoxia-induced expression in kidneys.


Subject(s)
Glucuronidase/metabolism , Hypoxia/metabolism , Interferon-alpha/metabolism , Kidney/metabolism , RNA Helicases/metabolism , Up-Regulation , Animals , Glucuronidase/genetics , Hypoxia/genetics , Mice , Mice, Knockout , RNA, Small Interfering , Rats
5.
Front Immunol ; 11: 575047, 2020.
Article in English | MEDLINE | ID: covidwho-895305

ABSTRACT

Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.


Subject(s)
Endothelium/pathology , Glucuronidase/antagonists & inhibitors , Glucuronidase/blood , Heparin Antagonists/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Tight Junctions/pathology , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Creatinine/blood , Critical Care , Cross-Sectional Studies , Female , Glucuronidase/metabolism , Heparitin Sulfate/blood , Humans , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
6.
EBioMedicine ; 59: 102969, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-728523

ABSTRACT

Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include: (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Heparin/metabolism , Heparin/pharmacology , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Histones/blood , Histones/metabolism , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Internalization/drug effects
7.
Cell Mol Life Sci ; 77(24): 5059-5077, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-381758

ABSTRACT

Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-ß-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.


Subject(s)
Glucuronidase/genetics , Neoplasms/genetics , Virus Diseases/genetics , Extracellular Matrix/genetics , Glucuronidase/metabolism , Heparitin Sulfate/metabolism , Humans , Immunity, Cellular/genetics , Neoplasms/pathology , Neoplasms/virology , Signal Transduction/genetics , Virus Diseases/immunology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL