Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Rep ; 12(1): 9510, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1984409

ABSTRACT

Biomarkers to identify ICU COVID-19 patients at high risk for mortality are urgently needed for therapeutic care and management. Here we found plasma levels of the glycolysis byproduct methylglyoxal (MG) were 4.4-fold higher in ICU patients upon admission that later died (n = 33), and 1.7-fold higher in ICU patients that survived (n = 32),compared to uninfected controls (n = 30). The increased MG in patients that died correlated inversely with the levels of the MG-degrading enzyme glyoxalase-1 (r2 = - 0.50), and its co-factor glutathione (r2 = - 0.63), and positively with monocytes (r2 = 0.29). The inflammation markers, SSAO (r2 = 0.52), TNF-α (r2 = 0.41), IL-1ß (r2 = 0.25), CRP (r2 = 0.26) also correlated positively with MG. Logistic regression analysis provides evidence of a significant relationship between the elevated MG upon admission into ICU and death (P < 0.0001), with 42% of the death variability explained. From these data we conclude that elevated plasma MG on admission is a novel independent biomarker that predicts mortality in ICU COVID-19 patients.


Subject(s)
COVID-19 , Intensive Care Units , Biomarkers , Glycolysis , Humans , Pyruvaldehyde
2.
Front Cell Infect Microbiol ; 12: 910864, 2022.
Article in English | MEDLINE | ID: covidwho-1974642

ABSTRACT

Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5' triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)-stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5.


Subject(s)
Antiviral Agents , Dendritic Cells , Antiviral Agents/metabolism , Glycolysis , Humans , Monocytes , Tretinoin/metabolism
3.
PLoS Pathog ; 18(7): e1010722, 2022 07.
Article in English | MEDLINE | ID: covidwho-1951571

ABSTRACT

Cytokines induce an anti-viral state, yet many of the functional determinants responsible for limiting viral infection are poorly understood. Here, we find that TNFα induces significant metabolic remodeling that is critical for its anti-viral activity. Our data demonstrate that TNFα activates glycolysis through the induction of hexokinase 2 (HK2), the isoform predominantly expressed in muscle. Further, we show that glycolysis is broadly important for TNFα-mediated anti-viral defense, as its inhibition attenuates TNFα's ability to limit the replication of evolutionarily divergent viruses. TNFα was also found to modulate the metabolism of UDP-sugars, which are essential precursor substrates for glycosylation. Our data indicate that TNFα increases the concentration of UDP-glucose, as well as the glucose-derived labeling of UDP-glucose and UDP-N-acetyl-glucosamine in a glycolytically-dependent manner. Glycolysis was also necessary for the TNFα-mediated accumulation of several glycosylated anti-viral proteins. Consistent with the importance of glucose-driven glycosylation, glycosyl-transferase inhibition attenuated TNFα's ability to promote the anti-viral cell state. Collectively, our data indicate that cytokine-mediated metabolic remodeling is an essential component of the anti-viral response.


Subject(s)
Antiviral Agents , Tumor Necrosis Factor-alpha , Cytokines/metabolism , Glucose/metabolism , Glycolysis , Tumor Necrosis Factor-alpha/metabolism , Uridine Diphosphate/metabolism
4.
Dis Model Mech ; 14(1)2021 01 22.
Article in English | MEDLINE | ID: covidwho-1910406

ABSTRACT

Human lifespan is now longer than ever and, as a result, modern society is getting older. Despite that, the detailed mechanisms behind the ageing process and its impact on various tissues and organs remain obscure. In general, changes in DNA, RNA and protein structure throughout life impair their function. Haematopoietic ageing refers to the age-related changes affecting a haematopoietic system. Aged blood cells display different functional aberrations depending on their cell type, which might lead to the development of haematologic disorders, including leukaemias, anaemia or declining immunity. In contrast to traditional bulk assays, which are not suitable to dissect cell-to-cell variation, single-cell-level analysis provides unprecedented insight into the dynamics of age-associated changes in blood. In this Review, we summarise recent studies that dissect haematopoietic ageing at the single-cell level. We discuss what cellular changes occur during haematopoietic ageing at the genomic, transcriptomic, epigenomic and metabolomic level, and provide an overview of the benefits of investigating those changes with single-cell precision. We conclude by considering the potential clinical applications of single-cell techniques in geriatric haematology, focusing on the impact on haematopoietic stem cell transplantation in the elderly and infection studies, including recent COVID-19 research.


Subject(s)
Aging/physiology , Hematopoietic System/physiology , Single-Cell Analysis/methods , Aging/genetics , Animals , Bone Marrow/physiology , DNA Damage , Epigenome , Glycolysis , Hematopoietic Stem Cell Transplantation , Humans , Mutation , Transcriptome
5.
Int Immunopharmacol ; 110: 109005, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907214

ABSTRACT

Interleukin-6 (IL-6) is a highly pleiotropic glycoprotein factor that can modulate innate and adaptive immunity as well as various aspects of metabolism, including glycolysis, fatty acid oxidation and oxidative phosphorylation. Recently, the expression and release of IL-6 is shown to be significantly increased in numerous diseases related to virus infection, and this increase is positively correlated with the disease severity. Immunity and metabolism are two highly integrated and interdependent systems, the balance between them plays a pivotal role in maintaining body homeostasis. IL-6-elicited inflammatory response is found to be closely associated with metabolic disorder in patients with viral infection. This brief review summarizes the regulatory role of IL-6 in immunometabolic reprogramming among seven viral infection-associated diseases.


Subject(s)
COVID-19 , Communicable Diseases , Adaptive Immunity , Glycolysis , Humans , Interleukin-6 , Oxidative Phosphorylation
6.
Viruses ; 14(3)2022 03 14.
Article in English | MEDLINE | ID: covidwho-1763118

ABSTRACT

Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.


Subject(s)
Neoplasms , Viruses , Energy Metabolism , Glycolysis , Humans , Mitochondria/metabolism , Neoplasms/metabolism , Virus Replication , Viruses/genetics
8.
J Med Chem ; 65(5): 3706-3728, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1699705

ABSTRACT

Glucose, the primary substrate for ATP synthesis, is catabolized during glycolysis to generate ATP and precursors for the synthesis of other vital biomolecules. Opportunistic viruses and cancer cells often hijack this metabolic machinery to obtain energy and components needed for their replication and proliferation. One way to halt such energy-dependent processes is by interfering with the glycolytic pathway. 2-Deoxy-d-glucose (2-DG) is a synthetic glucose analogue that can inhibit key enzymes in the glycolytic pathway. The efficacy of 2-DG has been reported across an array of diseases and disorders, thereby demonstrating its broad therapeutic potential. Recent approval of 2-DG in India as a therapeutic approach for the management of the COVID-19 pandemic has brought renewed attention to this molecule. The purpose of this perspective is to present updated therapeutic avenues as well as a variety of chemical synthetic strategies for this medically useful sugar derivative, 2-DG.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Deoxyglucose/chemistry , Adenosine Triphosphate/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/diagnosis , COVID-19/virology , Deoxyglucose/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/pathology , Glycolysis/drug effects , Humans , Isotope Labeling , Mitochondria/metabolism , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/pathology , Positron-Emission Tomography , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Structure-Activity Relationship , Virus Replication/drug effects
9.
Life Sci ; 295: 120411, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1683412

ABSTRACT

AIMS: Virus-infected host cells switch their metabolism to a more glycolytic phenotype, required for new virion synthesis and packaging. Therefore, we investigated the effect and mechanistic action of glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) on virus multiplication in host cells following SARS-CoV-2 infection. MAIN METHODS: SARS-CoV-2 induced change in glycolysis was examined in Vero E6 cells. Effect of 2-DG on virus multiplication was evaluated by RT-PCR (N and RdRp genes) analysis, protein expression analysis of Nucleocapsid (N) and Spike (S) proteins and visual indication of cytopathy effect (CPE), The mass spectrometry analysis was performed to examine the 2-DG induced change in glycosylation status of receptor binding domain (RBD) in SARS-CoV-2 spike protein. KEY FINDINGS: We observed SARS-COV-2 infection induced increased glucose influx and glycolysis, resulting in selectively high accumulation of the fluorescent glucose analog, 2-NBDG in Vero E6 cells. 2-DG inhibited glycolysis, reduced virus multiplication and alleviated cells from virus-induced cytopathic effect (CPE) in SARS-CoV-2 infected cells. The progeny virions produced from 2-DG treated cells were found unglycosylated at crucial N-glycosites (N331 and N343) of the receptor-binding domain (RBD) in the spike protein, resulting in production of defective progeny virions with compromised infective potential. SIGNIFICANCE: The mechanistic study revealed that the inhibition of SARS-COV-2 multiplication is attributed to 2-DG induced glycolysis inhibition and possibly un-glycosylation of the spike protein, also. Therefore, based on its previous human trials in different types of Cancer and Herpes patients, it could be a potential molecule to study in COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Deoxyglucose/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Adenosine Triphosphate/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Glucose/metabolism , Glycolysis/drug effects , Glycosylation , Host-Pathogen Interactions/drug effects , Mannose/pharmacology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virion/drug effects , Virion/pathogenicity , Virus Replication/drug effects
11.
Cell Rep ; 37(6): 109920, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1530684

ABSTRACT

It is urgent to develop disease models to dissect mechanisms regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we derive airway organoids from human pluripotent stem cells (hPSC-AOs). The hPSC-AOs, particularly ciliated-like cells, are permissive to SARS-CoV-2 infection. Using this platform, we perform a high content screen and identify GW6471, which blocks SARS-CoV-2 infection. GW6471 can also block infection of the B.1.351 SARS-CoV-2 variant. RNA sequencing (RNA-seq) analysis suggests that GW6471 blocks SARS-CoV-2 infection at least in part by inhibiting hypoxia inducible factor 1 subunit alpha (HIF1α), which is further validated by chemical inhibitor and genetic perturbation targeting HIF1α. Metabolic profiling identifies decreased rates of glycolysis upon GW6471 treatment, consistent with transcriptome profiling. Finally, xanthohumol, 5-(tetradecyloxy)-2-furoic acid, and ND-646, three compounds that suppress fatty acid biosynthesis, also block SARS-CoV-2 infection. Together, a high content screen coupled with transcriptome and metabolic profiling reveals a key role of the HIF1α-glycolysis axis in mediating SARS-CoV-2 infection of human airway epithelium.


Subject(s)
COVID-19/metabolism , Glycolysis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/metabolism , Organoids/metabolism , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/metabolism , HEK293 Cells , Humans , Pluripotent Stem Cells/metabolism , SARS-CoV-2/pathogenicity , Transcriptome/physiology , Vero Cells
12.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1469382

ABSTRACT

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Subject(s)
Citric Acid Cycle/physiology , Energy Metabolism/physiology , Fatty Acids/biosynthesis , Glycolysis/physiology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Adenoviridae/metabolism , Coronavirus/metabolism , Humans , Orthomyxoviridae/metabolism , Parainfluenza Virus 1, Human/metabolism , Respiratory Syncytial Viruses/metabolism , Rhinovirus/metabolism
13.
Cell Rep ; 37(3): 109839, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1439921

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Subject(s)
COVID-19/genetics , COVID-19/immunology , MicroRNAs/genetics , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Animals , Antiviral Agents/pharmacology , Biomarkers/metabolism , COVID-19/drug therapy , Cricetinae , Female , Ferrets , Gene Expression Regulation , Glycolysis , Healthy Volunteers , Humans , Hypoxia , Inflammation , Male , Mice , Middle Aged , Proteomics/methods , ROC Curve , Rats
14.
Life Sci Alliance ; 4(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1389961

ABSTRACT

Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction. Some of the catalysing enzymes of such reactions have demonstrated interactions with existing drugs, which can be used for experimental testing of the presented predictions using gene knockouts and RNA interference techniques. In summary, the developed computational approach offers a platform for rapid, experimentally testable generation of drug predictions against existing and emerging viruses based on their biomass requirements.


Subject(s)
Host-Pathogen Interactions , Lung , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Biomass , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Culture Media/chemistry , Culture Media/metabolism , Glycolysis/physiology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Lung/cytology , Lung/metabolism , Metabolic Flux Analysis , Models, Biological , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Systems Biology , Virus Replication/drug effects , Virus Replication/physiology
15.
FEBS Lett ; 595(18): 2350-2365, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363632

ABSTRACT

Cancer is considered a high-risk condition for severe illness resulting from COVID-19. The interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and human metabolism is key to elucidating the risk posed by COVID-19 for cancer patients and identifying effective treatments, yet it is largely uncharacterised on a mechanistic level. We present a genome-scale map of short-term metabolic alterations triggered by SARS-CoV-2 infection of cancer cells. Through transcriptomic- and proteomic-informed genome-scale metabolic modelling, we characterise the role of RNA and fatty acid biosynthesis in conjunction with a rewiring in energy production pathways and enhanced cytokine secretion. These findings link together complementary aspects of viral invasion of cancer cells, while providing mechanistic insights that can inform the development of treatment strategies.


Subject(s)
COVID-19/metabolism , Glycolysis , Models, Biological , Neoplasms/metabolism , SARS-CoV-2/metabolism , COVID-19/complications , Cell Line, Tumor , Genome, Human , Humans , Neoplasms/complications , Proteomics , SARS-CoV-2/isolation & purification
16.
EMBO Mol Med ; 13(8): e13901, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1346766

ABSTRACT

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Down-Regulation , Glycolysis , Humans , Oxidative Stress , Proteomics , Virus Activation , Virus Latency
17.
Elife ; 102021 06 21.
Article in English | MEDLINE | ID: covidwho-1278699

ABSTRACT

Increasing age is the strongest predictor of risk of COVID-19 severity and mortality. Immunometabolic switch from glycolysis to ketolysis protects against inflammatory damage and influenza infection in adults. To investigate how age compromises defense against coronavirus infection, and whether a pro-longevity ketogenic diet (KD) impacts immune surveillance, we developed an aging model of natural murine beta coronavirus (mCoV) infection with mouse hepatitis virus strain-A59 (MHV-A59). When inoculated intranasally, mCoV is pneumotropic and recapitulates several clinical hallmarks of COVID-19 infection. Aged mCoV-A59-infected mice have increased mortality and higher systemic inflammation in the heart, adipose tissue, and hypothalamus, including neutrophilia and loss of γδ T cells in lungs. Activation of ketogenesis in aged mice expands tissue protective γδ T cells, deactivates the NLRP3 inflammasome, and decreases pathogenic monocytes in lungs of infected aged mice. These data establish harnessing of the ketogenic immunometabolic checkpoint as a potential treatment against coronavirus infection in the aged.


Subject(s)
Coronavirus Infections/diet therapy , Diet, Ketogenic/methods , Murine hepatitis virus/pathogenicity , Age Factors , Aging , Animals , COVID-19/diet therapy , Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Disease Models, Animal , Glycolysis , Humans , Inflammasomes/metabolism , Ketone Bodies/metabolism , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2
18.
J Immunol ; 206(12): 2900-2908, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1248084

ABSTRACT

The relatively low partial pressure of oxygen, reduced oxygen saturation, and aberrant plasma metabolites in COVID-19 may alter energy metabolism in peripheral immune cells. However, little is known regarding the immunometabolic defects of T cells in COVID-19 patients, which may contribute to the deregulated immune functions of these cells. In this study, we longitudinally characterized the metabolic profiles of resting and activated T cells from acutely infected and convalescent COVID-19 patients by flow cytometry and confirmed the metabolic profiles with a Seahorse analyzer. Non-COVID-19 and healthy subjects were enrolled as controls. We found that ex vivo T cells from acutely infected COVID-19 patients were highly activated and apoptotic and displayed more extensive mitochondrial metabolic dysfunction, especially cells in CD8+ T cell lineages, than those from convalescent COVID-19 patients or healthy controls, but slightly disturbed mitochondrial metabolic activity was observed in non-COVID-19 patients. Importantly, plasma IL-6 and C-reactive protein (CRP) levels positively correlated with mitochondrial mass and negatively correlated with fatty acid uptake in T cells from COVID-19 patients. Additionally, compared with those from healthy controls, in vitro-activated T cells from acutely infected COVID-19 patients showed signs of lower glycolysis, a reduced glycolytic capacity, and a decreased glycolytic reserve, accompanied by lower activation of mTOR signaling. Thus, newly identified defects in T cell mitochondrial metabolic functions and metabolic reprogramming upon activation might contribute to immune deficiency in COVID-19.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Glycolysis , Humans , SARS-CoV-2
19.
Front Immunol ; 12: 651656, 2021.
Article in English | MEDLINE | ID: covidwho-1211812

ABSTRACT

Although immune dysfunction is a key feature of coronavirus disease 2019 (COVID-19), the metabolism-related mechanisms remain elusive. Here, by reanalyzing single-cell RNA sequencing data, we delineated metabolic remodeling in peripheral blood mononuclear cells (PBMCs) to elucidate the metabolic mechanisms that may lead to the progression of severe COVID-19. After scoring the metabolism-related biological processes and signaling pathways, we found that mono-CD14+ cells expressed higher levels of glycolysis-related genes (PKM, LDHA and PKM) and PPP-related genes (PGD and TKT) in severe patients than in mild patients. These genes may contribute to the hyperinflammation in mono-CD14+ cells of patients with severe COVID-19. The mono-CD16+ cell population in COVID-19 patients showed reduced transcription levels of genes related to lysine degradation (NSD1, KMT2E, and SETD2) and elevated transcription levels of genes involved in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which may inhibit M2-like polarization. Plasma cells also expressed higher levels of the OXPHOS gene ATP13A3 in COVID-19 patients, which was positively associated with antibody secretion and survival of PCs. Moreover, enhanced glycolysis or OXPHOS was positively associated with the differentiation of memory B cells into plasmablasts or plasma cells. This study comprehensively investigated the metabolic features of peripheral immune cells and revealed that metabolic changes exacerbated inflammation in monocytes and promoted antibody secretion and cell survival in PCs in COVID-19 patients, especially those with severe disease.


Subject(s)
COVID-19/immunology , Glycolysis/genetics , Lysine/metabolism , Monocytes/metabolism , Single-Cell Analysis/methods , Adenosine Triphosphatases/blood , Adenosine Triphosphatases/genetics , Antibodies/metabolism , COVID-19/metabolism , COVID-19/physiopathology , Databases, Genetic , GPI-Linked Proteins/metabolism , Gene Ontology , Hematopoiesis/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lipopolysaccharide Receptors/metabolism , Lysine/genetics , Membrane Transport Proteins/blood , Membrane Transport Proteins/genetics , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Monocytes/immunology , Monocytes/pathology , Oxidative Phosphorylation , RNA-Seq , Receptors, IgG/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
20.
Signal Transduct Target Ther ; 6(1): 112, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1118800
SELECTION OF CITATIONS
SEARCH DETAIL