Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
ACS Infect Dis ; 8(11): 2348-2361, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2185510

ABSTRACT

Better understanding of the molecular mechanisms underlying COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein are unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find that α2,6-sialylation is upregulated in the plasma of patients with severe COVID-19 and in autopsied lung tissue. This glycan motif is enriched on members of the complement cascade (e.g., C5, C9), which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.


Subject(s)
COVID-19 , Humans , Glycosylation , Polysaccharides
2.
Front Immunol ; 13: 993354, 2022.
Article in English | MEDLINE | ID: covidwho-2115279

ABSTRACT

Immunoglobulin G (IgG) antibodies play an important role in the immune response against viruses such as SARS-CoV-2. As the effector functions of IgG are modulated by N-glycosylation of the Fc region, the structure and possible function of the IgG N-glycome has been under investigation in relation to divergent COVID-19 disease courses. Through LC-MS analysis we studied both total IgG1 and spike protein-specific IgG1 Fc glycosylation of 129 German and 163 Brazilian COVID-19 patients representing diverse patient populations. We found that hospitalized COVID-19 patients displayed decreased levels of total IgG1 bisection and galactosylation and lowered anti-S IgG1 fucosylation and bisection as compared to mild outpatients. Anti-S IgG1 glycosylation was dynamic over the disease course and both anti-S and total IgG1 glycosylation were correlated to inflammatory markers. Further research is needed to dissect the possible role of altered IgG glycosylation profiles in (dys)regulating the immune response in COVID-19.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , Glycosylation , Biomarkers
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2113152

ABSTRACT

On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...].


Subject(s)
Food , Maillard Reaction , Glycosylation , Allergens , Glycation End Products, Advanced/metabolism
4.
Commun Biol ; 5(1): 1188, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2106511

ABSTRACT

SARS-CoV-2 has evolved continuously and accumulated spike mutations with each variant having a different binding for the cellular ACE2 receptor. It is not known whether the interactions between such mutated spikes and ACE2 glycans are conserved among different variant lineages. Here, we focused on three ACE2 glycosylation sites (53, 90 and 322) that are geometrically close to spike binding sites and investigated the effect of their glycosylation pattern on spike affinity. These glycosylation deletions caused distinct site-specific changes in interactions with the spike and acted cooperatively. Of note, the particular interaction profiles were conserved between the SARS-CoV-2 parental virus and the variants of concern (VOCs) Delta and Omicron. Our study provides insights for a better understanding of the importance of ACE2 glycosylation on ACE2/SARS-CoV-2 spike interaction and guidance for further optimization of soluble ACE2 for therapeutic use.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Glycosylation , Peptidyl-Dipeptidase A , Protein Binding
5.
Nutrients ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066296

ABSTRACT

The link between being pregnant and overweight or obese and the infectivity and virulence of the SARS CoV-2 virus is likely to be caused by SARS-CoV-2 spike protein glycosylation, which may work as a glycan shield. Methylglyoxal (MGO), an important advanced glycation end-product (AGE), and glycated albumin (GA) are the results of poor subclinical glucose metabolism and are indices of oxidative stress. Forty-one consecutive cases of SARS-CoV-2-positive pregnant patients comprising 25% pre-pregnancy overweight women and 25% obese women were recruited. The aim of our study was to compare the blood levels of MGO and GA in pregnant women with asymptomatic and symptomatic SARS-CoV-2 infection with pregnant women without SARS-CoV-2 infection with low risk and uneventful pregnancies and to evaluate the relative perinatal outcomes. The MGO and GA values of the SARS-CoV-2 cases were statistically significantly higher than those of the negative control subjects. In addition, the SARS-CoV-2-positive pregnant patients who suffered of moderate to severe COVID-19 syndrome had higher values of GA than those infected and presenting with mild symptoms or those with asymptomatic infection. Premature delivery and infants of a small size for their gestational age were overrepresented in this cohort, even in mild-asymptomatic patients for whom delivery was not indicated by the COVID-19 syndrome. Moreover, ethnic minorities were overrepresented among the severe cases. The AGE-RAGE oxidative stress axis on the placenta and multiple organs caused by MGO and GA levels, associated with the biological mechanisms of the glycation of the SARS-CoV-2 spike protein, could help to explain the infectivity and virulence of this virus in pregnant patients affected by being overweight or obese or having gestational diabetes, and the increased risk of premature delivery and/or low newborn weight.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , COVID-19/pathology , Female , Glucose , Glycosylation , Humans , Infant, Newborn , Inflammation , Obesity , Overweight , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , Pregnancy Outcome , Pregnant Women , Pyruvaldehyde , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3157-3172, 2022 Sep 25.
Article in Chinese | MEDLINE | ID: covidwho-2056457

ABSTRACT

COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/drug therapy , Glycosylation , Heparin , Heparitin Sulfate , Humans , Polysaccharides/chemistry , Receptors, Mitogen/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
7.
Vaccine ; 40(47): 6839-6848, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2042193

ABSTRACT

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Glycosylation , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Mammals/metabolism
8.
Bioinformatics ; 38(Supplement_2): ii162-ii167, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2037397

ABSTRACT

MOTIVATION: We have previously designed and implemented a tree-based ontology to represent glycan structures with the aim of searching these structures with a glyco-driven syntax. This resulted in creating the GlySTreeM knowledge-base as a linchpin of the structural matching procedure and we now introduce a query language, called GlycoQL, for the actual implementation of a glycan structure search. RESULTS: The methodology is described and illustrated with a use-case focused on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein glycosylation. We show how to enhance site annotation with federated queries involving UniProt and GlyConnect, our glycoprotein database. AVAILABILITY AND IMPLEMENTATION: https://glyconnect.expasy.org/glycoql/.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycoproteins , Glycosylation , Humans , Polysaccharides/chemistry
9.
Anal Chim Acta ; 1230: 340394, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2031063

ABSTRACT

ß-coronaviruses (ß-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of ß-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant ß-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of ß-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antiviral Agents , Fibronectins , Glycosylation , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Anal Chem ; 94(36): 12274-12279, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2016505

ABSTRACT

The spike (S) protein plays a key role in COVID-19 (SARS-CoV-2) infection and host-cell entry. Previous studies have systematically analyzed site-specific glycan compositions as well as many important structural motifs of the S protein. Here, we further provide structural-clear N-glycosylation of the S protein at a site-specific level by using our recently developed structural- and site-specific N-glycoproteomics sequencing algorithm, StrucGP. In addition to the common N-glycans as detected in previous studies, many uncommon glycosylation structures such as LacdiNAc structures, Lewis structures, Mannose 6-phosphate (M6P) residues, and bisected core structures were unambiguously mapped at a total of 20 glycosites in the S protein trimer and protomer. These data further support the glycosylation structural-functional investigations of the COVID-19 virus spike.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides/chemistry
11.
Trends Immunol ; 43(10): 800-814, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996295

ABSTRACT

Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.


Subject(s)
COVID-19 , Immunity, Humoral , Glycosylation , Humans , Immunoglobulin G , Polysaccharides
12.
J Virol ; 96(17): e0011822, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992935

ABSTRACT

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Glycosylation , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit/immunology
13.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1987901

ABSTRACT

The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work, the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20 among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , Humans , Mammals/metabolism , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tobacco/genetics , Tobacco/metabolism , Virion
14.
Proc Natl Acad Sci U S A ; 119(28): e2119761119, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1900767

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein is the prime target for vaccines, diagnostics, and therapeutic antibodies against the virus. While anchored in the viral envelope, for effective virulence, the spike needs to maintain structural flexibility to recognize the host cell surface receptors and bind to them, a property that can heavily depend upon the dynamics of the unresolved domains, most prominently the stalk. Construction of the complete, membrane-bound spike model and the description of its dynamics are critical steps in understanding the inner working of this key element of the viral infection by SARS-CoV-2. Combining homology modeling, protein-protein docking, and molecular dynamics (MD) simulations, we have developed a full spike structure in a native membrane. Multimicrosecond MD simulations of this model, the longest known single trajectory of the full spike, reveal conformational dynamics employed by the protein to explore the surface of the host cell. In agreement with cryogenic electron microscopy (cryo-EM), three flexible hinges in the stalk allow for global conformational heterogeneity of spike in the fully glycosylated system mediated by glycan-glycan and glycan-lipid interactions. The dynamical range of the spike is considerably reduced in its nonglycosylated form, confining the area explored by the spike on the host cell surface. Furthermore, palmitoylation of the membrane domain amplifies the local curvature that may prime the fusion. We show that the identified hinge regions are highly conserved in SARS coronaviruses, highlighting their functional importance in enhancing viral infection, and thereby, provide points for discovery of alternative therapeutics against the virus.


Subject(s)
COVID-19 , Host Microbial Interactions , Protein Processing, Post-Translational , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Glycosylation , Humans , Polysaccharides , Protein Binding , Receptors, Cell Surface/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Proteomics ; 22(15-16): e2100322, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885450

ABSTRACT

Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Mass Spectrometry/methods , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
16.
Anal Chem ; 94(15): 5776-5784, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1882709

ABSTRACT

Characterization of protein glycosylation by tandem mass spectrometry remains challenging owing to the vast diversity of oligosaccharides bound to proteins, the variation in monosaccharide linkage patterns, and the lability of the linkage between the glycan and protein. Here, we have adapted an HCD-triggered-ultraviolet photodissociation (UVPD) approach for the simultaneous localization of glycosites and full characterization of both glycan compositions and intersaccharide linkages, the latter provided by extensive cross-ring cleavages enabled by UVPD. The method is applied to study glycan compositions based on analysis of glycopeptides from proteolytic digestion of recombinant human coronaviruse spike proteins from SARS-CoV-2 and HKU1. UVPD reveals unique intersaccharide linkage information and is leveraged to localize N-linked glycoforms with confidence.


Subject(s)
COVID-19 , Viral Proteins , Glycosylation , Humans , Polysaccharides/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tandem Mass Spectrometry/methods , Ultraviolet Rays
18.
Curr Opin Struct Biol ; 75: 102402, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852027

ABSTRACT

The structure and post-translational processing of the SARS-CoV-2 spike glycoprotein (S) is intimately associated with the function of the virus and of sterilising vaccines. The surface of the S protein is extensively modified by glycans, and their biosynthesis is driven by both the wider cellular context, and importantly, the underlining protein structure and local glycan density. Comparison of virally derived S protein with both recombinantly derived and adenovirally induced proteins, reveal hotspots of protein-directed glycosylation that drive conserved glycosylation motifs. Molecular dynamics simulations revealed that, while the S surface is extensively shielded by N-glycans, it presents regions vulnerable to neutralising antibodies. Furthermore, glycans have been shown to influence the accessibility of the receptor binding domain and the binding to the cellular receptor. The emerging picture is one of unifying, principles of S protein glycosylation and an intimate role of glycosylation in immunogen structure and efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides/metabolism , Protein Binding
19.
Curr Opin Struct Biol ; 73: 102348, 2022 04.
Article in English | MEDLINE | ID: covidwho-1852025

ABSTRACT

Vaccine-induced immunity is expected to target the native antigens expressed by the pathogens. Therefore, it is highly important to generate vaccine antigens that are immunologically indistinguishable from the native antigens. Nucleic acid vaccines, comprised of DNA, mRNA, or recombinant viral vector vaccines, introduce the genetic material encoding the antigenic protein for the host to express. Because these proteins will undergo host posttranslational modifications, host glycosylation can potentially alter the structure and immunological efficacy of the antigen. In this review, we discuss the potential impact of host protein glycosylation on the immune responses generated by nucleic acid vaccines against bacterial and viral pathogens.


Subject(s)
Viral Vaccines , Antigens , Glycosylation , Protein Processing, Post-Translational , Viral Vaccines/genetics
20.
J Med Virol ; 94(9): 4181-4192, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844141

ABSTRACT

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Glycosylation , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL