Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Dev Cell ; 56(11): 1646-1660.e5, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1233404

ABSTRACT

Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.


Subject(s)
Airway Obstruction/genetics , Metaplasia/genetics , SOX9 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Airway Obstruction/metabolism , Airway Obstruction/pathology , Animals , Cell Transdifferentiation/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Goblet Cells/metabolism , Goblet Cells/pathology , Humans , Interleukin-13/genetics , MAP Kinase Signaling System/genetics , Metaplasia/pathology , Mice , Mucus/metabolism , Single-Cell Analysis
2.
Eye Contact Lens ; 47(4): 168-173, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1140027

ABSTRACT

PURPOSE: To assess the effect of severe acute respiratory syndrome coronavirus-2 infection on the conjunctiva and tear film. METHODS: Thirty-eight patients with confirmed COVID-19 and 31 healthy controls were included in this prospective and observational study. Individuals with COVID-19 formed the patient group, and healthy individuals formed the control group. Conjunctival impression cytology (CIC), TBUT, Schirmer II test, and ocular surface disease index were evaluated in all participants. RESULTS: No significant difference was observed regarding the mean age and gender between the groups (P=0.786 and P=0.122, respectively). The mean TBUT and Schirmer II test results did not differ between the two groups (P=0.496 and P=0.447, respectively). The CIC results revealed decreased density and cell size of goblet cells and moderate to high enlargement, squamous changes, and increased nucleocytoplasmic ratio in nongoblet epithelial cells in the COVID-19 group compared with the control group. Based on the Nelson classification in CIC samples, 60.6% of the COVID-19 group and 19.4% of the control group had changes consistent with grade 2 or above. The presence of neutrophils in CIC was significantly higher in the COVID-19 group (P<0.001), whereas the presence of lymphocyte was similar between the two groups (P=0.247). CONCLUSION: This study revealed the pathological conjunctival alterations in patients with COVID-19 and demonstrated that pathological ocular surface alterations may present even at the beginning of COVID-19 without clinically significant ocular manifestation.


Subject(s)
COVID-19/diagnosis , Conjunctiva/pathology , Conjunctivitis, Viral/diagnosis , Dry Eye Syndromes/diagnosis , Eye Infections, Viral/diagnosis , SARS-CoV-2/isolation & purification , Tears/virology , Adult , COVID-19 Nucleic Acid Testing , Cell Count , Cell Size , Conjunctivitis, Viral/virology , Cross-Sectional Studies , Cytological Techniques , Dry Eye Syndromes/virology , Eye Infections, Viral/virology , Female , Goblet Cells/pathology , Humans , Lymphocytes/pathology , Male , Middle Aged , Neutrophils/pathology , Prospective Studies , SARS-CoV-2/genetics , Young Adult
3.
Exp Eye Res ; 205: 108501, 2021 04.
Article in English | MEDLINE | ID: covidwho-1082698

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in immunity process. This identification of conjunctival cell types which are permissive to virus entry would help to understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for COVID-19 control and protection.


Subject(s)
COVID-19/genetics , Conjunctiva/metabolism , Gene Expression Regulation , Goblet Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , COVID-19/metabolism , COVID-19/pathology , Conjunctiva/pathology , Goblet Cells/pathology , Humans , Peptidyl-Dipeptidase A/biosynthesis , RNA/genetics , SARS-CoV-2 , Serine Endopeptidases/biosynthesis
4.
Gastroenterology ; 160(5): 1647-1661, 2021 04.
Article in English | MEDLINE | ID: covidwho-1065985

ABSTRACT

BACKGROUND & AIMS: Gastrointestinal (GI) manifestations have been increasingly reported in patients with coronavirus disease 2019 (COVID-19). However, the roles of the GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We investigated how the GI tract is involved in SARS-CoV-2 infection to elucidate the pathogenesis of COVID-19. METHODS: Our previously established nonhuman primate (NHP) model of COVID-19 was modified in this study to test our hypothesis. Rhesus monkeys were infected with an intragastric or intranasal challenge with SARS-CoV-2. Clinical signs were recorded after infection. Viral genomic RNA was quantified by quantitative reverse transcription polymerase chain reaction. Host responses to SARS-CoV-2 infection were evaluated by examining inflammatory cytokines, macrophages, histopathology, and mucin barrier integrity. RESULTS: Intranasal inoculation with SARS-CoV-2 led to infections and pathologic changes not only in respiratory tissues but also in digestive tissues. Expectedly, intragastric inoculation with SARS-CoV-2 resulted in the productive infection of digestive tissues and inflammation in both the lung and digestive tissues. Inflammatory cytokines were induced by both types of inoculation with SARS-CoV-2, consistent with the increased expression of CD68. Immunohistochemistry and Alcian blue/periodic acid-Schiff staining showed decreased Ki67, increased cleaved caspase 3, and decreased numbers of mucin-containing goblet cells, suggesting that the inflammation induced by these 2 types of inoculation with SARS-CoV-2 impaired the GI barrier and caused severe infections. CONCLUSIONS: Both intranasal and intragastric inoculation with SARS-CoV-2 caused pneumonia and GI dysfunction in our rhesus monkey model. Inflammatory cytokines are possible connections for the pathogenesis of SARS-CoV-2 between the respiratory and digestive systems.


Subject(s)
COVID-19/transmission , Gastroenteritis/pathology , Gastrointestinal Tract/pathology , Lung/pathology , Animals , Bronchi/metabolism , Bronchi/pathology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19 Nucleic Acid Testing , Caspase 3/metabolism , Cytokines/immunology , Disease Models, Animal , Gastric Mucosa , Gastroenteritis/metabolism , Gastroenteritis/virology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Goblet Cells/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Ki-67 Antigen/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Macaca mulatta , Nasal Mucosa , RNA, Viral/isolation & purification , Random Allocation , Rectum/metabolism , Rectum/pathology , SARS-CoV-2 , Trachea/metabolism , Trachea/pathology
SELECTION OF CITATIONS
SEARCH DETAIL