Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1785729

ABSTRACT

The development of affordable, effective, and environmentally friendly barrier fabrics is a current goal in antimicrobial textile development. The discovery of new routes to achieve non-toxic naturally occurring molecules with antimicrobial activity is of interest in the development of materials that promote wound healing, improve hygiene, and offer protection against nosocomial infection. Highly cleaned and sterile unbleached cotton has constituents that produce hydrogen peroxide at levels commensurate with those that favor cell signaling in wound healing. Here, we show the antimicrobial and antiviral properties of spunlaced griege cotton-containing nonwovens treated with ascorbic acid formulations. The mechanism of action occurs through the promotion of enhanced hydrogen peroxide activity. The levels of hydrogen peroxide activity afford antimicrobial activity against Gram-negative and Gram-positive bacteria and antiviral activity against MS2 bacteriophages. Spun-bond nonwoven unbleached cotton was treated with ascorbic acid using traditional pad-dry-cure methods. An assessment of antibacterial and antiviral activity against Staphylococcus aureus, Klebsiella pneumoniae, and MS2 bacteriophages with the AATCC 100 test method showed a 99.99% inhibitory activity. An approach to the covalent attachment of ascorbic to cellulose through citric acid crosslinking chemistry is also discussed. Thus, a simple, low-cost approach to antimicrobial and antiviral cotton-based nonwovens applicable to dressings, nosocomial barrier fabrics, and face masks can be adopted by combining ascorbic acid with spunlace greige cotton nonwoven fabrics.


Subject(s)
Anti-Infective Agents , Cotton Fiber , Adjuvants, Pharmaceutic , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents , Ascorbic Acid/pharmacology , Gossypium , Hydrogen Peroxide , Textiles
2.
PLoS One ; 17(3): e0264090, 2022.
Article in English | MEDLINE | ID: covidwho-1753188

ABSTRACT

The objective of this study was to characterize commercially-available cotton fabrics to determine their suitability as materials for construction of cloth masks for personal and public use to reduce infectious disease spread. The study focused on cottons because of their widespread availability, moderate performance and they are recommended for inclusion in home-made masks by international health authorities. Fifty-two cottons were analyzed by electron microscopy to determine fabric characteristics and fabric weights. Sixteen fabrics were selected to test for breathability and to construct 2-ply cotton masks of a standard design to use in quantitative fit testing on a human participant. Cotton mask fitted filtration efficiencies (FFEs) for 0.02-1 µm ambient and aerosolized sodium chloride particles ranged from 40 to 66% compared with the mean medical mask FFE of 55±2%. Pressure differentials across 2-ply materials ranged from 0.57 to > 12 mm H2O/cm2 on samples of equal surface area with 6 of 16 materials exceeding the recommended medical mask limit. Models were calibrated to predict 2-ply cotton mask FFEs and differential pressures for each fabric based on pore characteristics and fabric weight. Models indicated cotton fabrics from 6 of 9 consumer categories can produce cloth masks with adequate breathability and FFEs equivalent to a medical mask: T-shirt, fashion fabric, mass-market quilting cotton, home décor fabric, bed sheets and high-quality quilting cotton. Masks from one cloth mask and the medical mask were re-tested with a mask fitter to distinguish filtration from leakage. The fabric and medical masks had 3.7% and 41.8% leakage, respectively. These results indicate a well fitted 2-ply cotton mask with overhead ties can perform similarly to a disposable 3-ply medical mask on ear loops due primarily to the superior fit of the cloth mask which compensates for its lower material filtration efficiency.


Subject(s)
COVID-19 , Filtration , Gossypium , Humans , Textiles
3.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-997756

ABSTRACT

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Subject(s)
COVID-19/diagnosis , Cotton Fiber , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Gossypium/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/instrumentation , Limit of Detection , Nanofibers/chemistry , Phosphoproteins/chemistry , Phosphoproteins/immunology , SARS-CoV-2/immunology
4.
ACS Appl Mater Interfaces ; 12(44): 49442-49451, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-889127

ABSTRACT

Cotton fabrics with durable and reusable daylight-induced antibacterial/antiviral functions were developed by using a novel fabrication process, which employs strong electrostatic interaction between cationic cotton fibers and anionic photosensitizers. The cationic cotton contains polycationic short chains produced by a self-propagation of 2-diehtylaminoehtyl chloride (DEAE-Cl) on the surface of cotton fibers. Then, the fabric (i.e., polyDEAE@cotton) can be readily functionalized with anionic photosensitizers like rose Bengal and sodium 2-anthraquinone sulfate to produce biocidal reactive oxygen species (ROS) under light exposure and consequently provide the photo-induced biocidal functions. The biocidal properties of the photo-induced fabrics (PIFs) were demonstrated by ROS production measurements, bactericidal performance against bacteria (e.g., E coli and L. innocua), and antiviral results against T7 bacteriophage. The PIFs achieved 99.9999% (6 log) reductions against bacteria and the bacteriophage within 60 min of daylight exposure. Moreover, the PIFs showcase excellent washability and photostability, making them ideal materials for reusable face masks and protective suits with improved biological protections compared with traditional PPE. This work demonstrated that the cationized cotton could serve as a platform for different functionalization applications, and the resulting fiber materials could inspire the development of reusable and sustainable PPE with significant bioprotective properties to fight the COVID-19 pandemic as well as the spread of other contagious diseases.


Subject(s)
Coronavirus Infections/prevention & control , Gossypium/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles/virology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , COVID-19 , Clothing/standards , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gossypium/chemistry , Gossypium/microbiology , Humans , Hydrophobic and Hydrophilic Interactions , Light , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Textiles/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL