Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 803
Filter
1.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20244460

ABSTRACT

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , HEK293 Cells , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
PLoS Pathog ; 18(1): e1010171, 2022 01.
Article in English | MEDLINE | ID: covidwho-2327858

ABSTRACT

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung/virology , SARS-CoV-2/physiology , Virus Internalization , Adult , Animals , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Inflammation/pathology , Inflammation/therapy , Inflammation/virology , Lung/pathology , SARS-CoV-2/drug effects , Vero Cells , Virus Internalization/drug effects
3.
PLoS One ; 18(5): e0285722, 2023.
Article in English | MEDLINE | ID: covidwho-2326977

ABSTRACT

An epidemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. Moreover, the emergence of SARS-CoV-2 variants of concern, such as Delta and Omicron, has seriously challenged the application of current therapeutics including vaccination and drugs. Relying on interaction of spike protein with receptor angiotensin-converting enzymes 2 (ACE2), SARS-CoV-2 successfully invades to the host cells, which indicates a strategy that identification of small-molecular compounds to block the entry is of great significance for COVID-19 prevention. Our study evaluated the potential efficacy of natural compound oxalic acid (OA) as an inhibitory agent against SARS-CoV-2 invasion, particular on the interaction of the receptor binding domain (RBD) of Delta and Omicron variants to ACE2. By employing a competitive binding assay in vitro, OA significantly blocked the binding of RBDs from Delta B.1.617.2 and Omicron B.1.1.529 to ACE2, but has no effect on the wide-type SARS-CoV-2 strain. Furthermore, OA inhibited the entries of Delta and Omicron pseudovirus into ACE2 high expressing-HEK293T cells. By surface plasmon resonance (SPR) assay, the direct bindings of OA to RBD and ACE2 were analyzed and OA had both affinities with RBDs of B.1.617.2 and B.1.1.529 and with ACE2. Molecular docking predicted the binding sites on the RBD-ACE2 complex and it showed similar binding abilities to both complex of variant Delta or Omicron RBD and ACE2. In conclusion, we provided a promising novel small-molecule compound OA as an antiviral candidate by blocking the cellular entries of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Oxalic Acid , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/genetics , Angiotensins , Protein Binding
4.
Appl Microbiol Biotechnol ; 107(11): 3495-3508, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2314727

ABSTRACT

Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative. In order to produce these structures using mammal cells, it has been established that all four structural proteins must be expressed. Here we report the generation and characterization of a novel chimeric virus-like particle (VLP) that can be produced by the expression of a single novel fusion protein that contains SARS-CoV-2 spike (S) ectodomain fused to rabies glycoprotein membrane anchoring region in HEK293 cells. This protein is structurally similar to native S and can autonomously bud forming enveloped VLPs that resemble native virions both in size and in morphology, displaying S ectodomain and receptor binding domain (RBD) on their surface. As a proof of concept, we analyzed the immunogenicity of this vaccine candidate in mice and confirmed the generation of anti-S, anti-RBD, and neutralizing antibodies. KEY POINTS: • A novel fusion rabies glycoprotein containing S ectodomain was designed. • Fusion protein formed cVLPs that were morphologically similar to SARS-CoV-2 virions. • cVLPs induced anti-S, anti-RBD, and neutralizing antibodies in mice.


Subject(s)
COVID-19 , Rabies , Viral Vaccines , Animals , Mice , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Viral , HEK293 Cells , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Mammals
5.
Sci Signal ; 16(783): eadd0082, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2313380

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro), which has deubiquitinating activity, suppresses the type I interferon (IFN-I) antiviral response. We investigated the mechanism by which PLpro antagonizes cellular antiviral responses. In HEK392T cells, PLpro removed K63-linked polyubiquitin chains from Lys289 of the stimulator of interferon genes (STING). PLpro-mediated deubiquitination of STING disrupted the STING-IKKε-IRF3 complex that induces the production of IFN-ß and IFN-stimulated cytokines and chemokines. In human airway cells infected with SARS-CoV-2, the combined treatment with the STING agonist diABZi and the PLpro inhibitor GRL0617 resulted in the synergistic inhibition of SARS-CoV-2 replication and increased IFN-I responses. The PLpros of seven human coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63) and four SARS-CoV-2 variants of concern (α, ß, γ, and δ) all bound to STING and suppressed STING-stimulated IFN-I responses in HEK293T cells. These findings reveal how SARS-CoV-2 PLpro inhibits IFN-I signaling through STING deubiquitination and a general mechanism used by seven human coronaviral PLpros to dysregulate STING and to facilitate viral innate immune evasion. We also identified simultaneous pharmacological STING activation and PLpro inhibition as a potentially effective strategy for antiviral therapy against SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , Humans , HEK293 Cells , SARS-CoV-2/metabolism , Papain/genetics , Papain/metabolism , Peptide Hydrolases/metabolism , Antiviral Agents
6.
Protein Expr Purif ; 210: 106295, 2023 10.
Article in English | MEDLINE | ID: covidwho-2313951

ABSTRACT

The human cell line HEK293 is one of the preferred choices for manufacturing therapeutic proteins and viral vectors for human applications. Despite its increased use, it is still considered in disadvantage in production aspects compared to cell lines such as the CHO cell line. We provide here a simple workflow for the rapid generation of stably transfected HEK293 cells expressing an engineered variant of the SARS-CoV-2 Receptor Binding Domain (RBD) carrying a coupling domain for linkage to VLPs through a bacterial transpeptidase-sortase (SrtA). To generate stable suspension cells expressing the RBD-SrtA, a single two plasmids transfection was performed, with hygromycin selection. The suspension HEK293 were grown in adherent conditions, with 20% FBS supplementation. These transfection conditions increased cell survival, allowing the selection of stable cell pools, which was otherwise not possible with standard procedures in suspension. Six pools were isolated, expanded and successfully re-adapted to suspension with a gradual increase of serum-free media and agitation. The complete process lasted four weeks. Stable expression with viability over 98% was verified for over two months in culture, with cell passages every 4-5 days. With process intensification, RBD-SrtA yields reached 6.4 µg/mL and 13.4 µg/mL in fed-batch and perfusion-like cultures, respectively. RBD-SrtA was further produced in fed-batch stirred tank 1L-bioreactors, reaching 10-fold higher yields than perfusion flasks. The trimeric antigen displayed the conformational structure and functionality expected. This work provides a series of steps for stable cell pool development using suspension HEK293 cells aimed at the scalable production of recombinant proteins.


Subject(s)
COVID-19 , Humans , HEK293 Cells , SARS-CoV-2 , Bioreactors , Recombinant Proteins/genetics
7.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-2308229

ABSTRACT

Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Bronchioles/cytology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/virology , HEK293 Cells , Humans , Neutralization Tests , Phosphoproteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
Vet Microbiol ; 280: 109709, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297201

ABSTRACT

Infectious bronchitis virus (IBV) has restricted cell and tissue tropism. IBVs, except the Beaudette strain, can infect and replicate in chicken embryos, primary chicken embryo kidneys, and primary chicken kidney cells, only. The limited viral cell tropism of IBV substantially hinders in vitro cell-based research on pathogenic mechanisms and vaccine development. Herein, the parental H120 vaccine strain was serially passaged for five generations in chicken embryos, 20 passages in CK cells and 80 passages in Vero cells. This passaging yielded a Vero cell-adapted strain designated HV80. To further understand viral evolution, serial assessments of infection, replication, and transmission in Vero cells were performed for the viruses obtained every tenth passage. The ability to form syncytia and the replication efficiency significantly after the 50th passage (strain HV50). HV80 also displayed tropism extension to DF-1, BHK-21, HEK-293 T, and HeLa cells. Whole genome sequencing of viruses from every tenth generation revealed a total of 19 amino acid point mutations in the viral genome by passage 80, nine of which occurred in the S gene. The second furin cleavage site appeared in viral evolution and may be associated with cell tropism extension of HV80.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Viral Vaccines , Chlorocebus aethiops , Chick Embryo , Animals , Humans , Vero Cells , Infectious bronchitis virus/genetics , HeLa Cells , HEK293 Cells , Chickens , Coronavirus Infections/veterinary
9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2291565

ABSTRACT

We have previously shown computationally that Mycolactone (MLN), a toxin produced by Mycobacterium ulcerans, strongly binds to Munc18b and other proteins, presumably blocking degranulation and exocytosis of blood platelets and mast cells. We investigated the effect of MLN on endocytosis using similar approaches, and it bound strongly to the N-terminal of the clathrin protein and a novel SARS-CoV-2 fusion protein. Experimentally, we found 100% inhibition up to 60 nM and 84% average inhibition at 30 nM in SARS-CoV-2 live viral assays. MLN was also 10× more potent than remdesivir and molnupiravir. MLN's toxicity against human alveolar cell line A549, immortalized human fetal renal cell line HEK293, and human hepatoma cell line Huh7.1 were 17.12%, 40.30%, and 36.25%, respectively. The cytotoxicity IC50 breakpoint ratio versus anti-SARS-CoV-2 activity was more than 65-fold. The IC50 values against the alpha, delta, and Omicron variants were all below 0.020 µM, and 134.6 nM of MLN had 100% inhibition in an entry and spread assays. MLN is eclectic in its actions through its binding to Sec61, AT2R, and the novel fusion protein, making it a good drug candidate for treating and preventing COVID-19 and other similarly transmitted enveloped viruses and pathogens.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , HEK293 Cells
10.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2305306

ABSTRACT

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Subject(s)
COVID-19 , ISCOMs , Humans , Mice , Animals , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , SARS-CoV-2 , Antigen-Antibody Complex , Pandemics/prevention & control , HEK293 Cells , Antibodies, Viral , Antibodies, Neutralizing , Adjuvants, Immunologic , Aluminum Hydroxide
11.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2270162

ABSTRACT

BACKGROUND: In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS: The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS: We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteolysis , Proteasome Endopeptidase Complex , HEK293 Cells
12.
Front Immunol ; 14: 1120298, 2023.
Article in English | MEDLINE | ID: covidwho-2269662

ABSTRACT

The co-occurrence and the similarities between malaria and COVID-19 diseases raise the question of whether SARS-CoV-2 is capable of infecting red blood cells and, if so, whether these cells represent a competent niche for the virus. In this study, we first tested whether CD147 functions as an alternative receptor of SARS-CoV-2 to infect host cells. Our results show that transient expression of ACE2 but not CD147 in HEK293T allows SARS-CoV-2 pseudoviruses entry and infection. Secondly, using a SARS-CoV-2 wild type virus isolate we tested whether the new coronavirus could bind and enter erythrocytes. Here, we report that 10,94% of red blood cells had SARS-CoV-2 bound to the membrane or inside the cell. Finally, we hypothesized that the presence of the malaria parasite, Plasmodium falciparum, could make erythrocytes more vulnerable to SARS-CoV-2 infection due to red blood cell membrane remodelling. However, we found a low coinfection rate (9,13%), suggesting that P. falciparum would not facilitate the entry of SARS-CoV-2 virus into malaria-infected erythrocytes. Besides, the presence of SARS-CoV-2 in a P. falciparum blood culture did not affect the survival or growth rate of the malaria parasite. Our results are significant because they do not support the role of CD147 in SARS-CoV-2 infection, and indicate, that mature erythrocytes would not be an important reservoir for the virus in our body, although they can be transiently infected.


Subject(s)
COVID-19 , Coinfection , Malaria, Falciparum , Humans , SARS-CoV-2 , Plasmodium falciparum , HEK293 Cells , Malaria, Falciparum/parasitology , Erythrocytes
13.
BMC Biotechnol ; 23(1): 7, 2023 03 07.
Article in English | MEDLINE | ID: covidwho-2261238

ABSTRACT

BACKGROUND: Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS: Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION: Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Animals , Humans , SARS-CoV-2/genetics , HEK293 Cells , Herpesvirus 4, Human , Kidney , Mammals
14.
Virol J ; 20(1): 55, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2267029

ABSTRACT

When viruses like SARS-CoV-2 infect cells, they reprogram the repertoire of cellular and viral transcripts that are being translated to optimize their strategy of replication, often targeting host translation initiation factors, particularly eIF4F complex consisting of eIF4E, eIF4G and eIF4A. A proteomic analysis of SARS-CoV-2/human proteins interaction revealed viral Nsp2 and initiation factor eIF4E2, but a role of Nsp2 in regulating translation is still controversial. HEK293T cells stably expressing Nsp2 were tested for protein synthesis rates of synthetic and endogenous mRNAs known to be translated via cap- or IRES-dependent mechanism under normal and hypoxic conditions. Both cap- and IRES-dependent translation were increased in Nsp2-expressing cells under normal and hypoxic conditions, especially mRNAs that require high levels of eIF4F. This could be exploited by the virus to maintain high translation rates of both viral and cellular proteins, particularly in hypoxic conditions as may arise in SARS-CoV-2 patients with poor lung functioning.


Subject(s)
COVID-19 , Protein Biosynthesis , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/metabolism , HEK293 Cells , Humans , Viral Nonstructural Proteins/analysis , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism , Eukaryotic Initiation Factor-4E/isolation & purification , Eukaryotic Initiation Factor-4E/metabolism , Peptide Chain Initiation, Translational , COVID-19/metabolism , COVID-19/virology
15.
Viruses ; 15(3)2023 02 25.
Article in English | MEDLINE | ID: covidwho-2264839

ABSTRACT

Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo.


Subject(s)
Interferon Lambda , Receptors, Interferon , Humans , HEK293 Cells , Interferon Lambda/metabolism , Interferons , Protein Isoforms/genetics , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Antiviral Restriction Factors
16.
Sci Rep ; 13(1): 5328, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2258659

ABSTRACT

SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.


Subject(s)
Adamantane , COVID-19 , Humans , Viroporin Proteins , SARS-CoV-2 , HEK293 Cells , Flavonoids
17.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2254740

ABSTRACT

Classified as a class B infectious disease by the World Organization for Animal Health (OIE), bovine viral diarrhea/mucosal disease is an acute, highly contagious disease caused by the bovine viral diarrhea virus (BVDV). Sporadic endemics of BVDV often lead to huge economic losses to the dairy and beef industries. To shed light on the prevention and control of BVDV, we developed two novel subunit vaccines by expressing bovine viral diarrhea virus E2 fusion recombinant proteins (E2Fc and E2Ft) through suspended HEK293 cells. We also evaluated the immune effects of the vaccines. The results showed that both subunit vaccines induced an intense mucosal immune response in calves. Mechanistically, E2Fc bonded to the Fc γ receptor (FcγRI) on antigen-presenting cells (APCs) and promoted IgA secretion, leading to a stronger T-cell immune response (Th1 type). The neutralizing antibody titer stimulated by the mucosal-immunized E2Fc subunit vaccine reached 1:64, which was higher than that of the E2Ft subunit vaccine and that of the intramuscular inactivated vaccine. The two novel subunit vaccines for mucosal immunity developed in this study, E2Fc and E2Ft, can be further used as new strategies to control BVDV by enhancing cellular and humoral immunity.


Subject(s)
Diarrhea Virus 2, Bovine Viral , Immunity, Mucosal , Viral Vaccines , Animals , Cattle , Humans , Antibodies, Viral , Diarrhea , HEK293 Cells , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Hemorrhagic Syndrome, Bovine/prevention & control
18.
Antiviral Res ; 213: 105587, 2023 05.
Article in English | MEDLINE | ID: covidwho-2285219

ABSTRACT

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 µM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 µM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Electric Impedance , HEK293 Cells , Spike Glycoprotein, Coronavirus/chemistry , Membrane Fusion , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Anti-Retroviral Agents/pharmacology
19.
Int J Biol Macromol ; 226: 780-792, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2246439

ABSTRACT

Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/genetics , Molecular Dynamics Simulation , Protein Binding
20.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2233318

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , HEK293 Cells , Cysteine Endopeptidases/metabolism , Electrophoresis , Protease Inhibitors/chemistry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL