Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Cells ; 9(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-732817

ABSTRACT

Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.


Subject(s)
Aminopeptidases/genetics , Betacoronavirus/immunology , Coronavirus Infections/genetics , Immunization/methods , Leukocytes, Mononuclear/virology , Macrophages/virology , Pneumonia, Viral/genetics , Protein Isoforms/genetics , Antigen Presentation/genetics , Blood Donors , Cell Line, Tumor , Coronavirus Infections/virology , Gene Expression/immunology , Genotype , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , Humans , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Minor Histocompatibility Antigens/genetics , Pandemics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/immunology
3.
Viruses ; 12(9)2020 08 26.
Article in English | MEDLINE | ID: covidwho-731256

ABSTRACT

Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases.


Subject(s)
Coinfection/virology , Coronavirus Infections/virology , HIV Infections/virology , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , Coinfection/epidemiology , Coinfection/immunology , Coinfection/therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/therapy , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Treatment Outcome
6.
Lancet HIV ; 7(9): e629-e640, 2020 09.
Article in English | MEDLINE | ID: covidwho-695906

ABSTRACT

BACKGROUND: The COVID-19 pandemic could lead to disruptions to provision of HIV services for people living with HIV and those at risk of acquiring HIV in sub-Saharan Africa, where UNAIDS estimated that more than two-thirds of the approximately 38 million people living with HIV resided in 2018. We aimed to predict the potential effects of such disruptions on HIV-related deaths and new infections in sub-Saharan Africa. METHODS: In this modelling study, we used five well described models of HIV epidemics (Goals, Optima HIV, HIV Synthesis, an Imperial College London model, and Epidemiological MODeling software [EMOD]) to estimate the effect of various potential disruptions to HIV prevention, testing, and treatment services on HIV-related deaths and new infections in sub-Saharan Africa lasting 6 months over 1 year from April 1, 2020. We considered scenarios in which disruptions affected 20%, 50%, and 100% of the population. FINDINGS: A 6-month interruption of supply of antiretroviral therapy (ART) drugs across 50% of the population of people living with HIV who are on treatment would be expected to lead to a 1·63 times (median across models; range 1·39-1·87) increase in HIV-related deaths over a 1-year period compared with no disruption. In sub-Saharan Africa, this increase amounts to a median excess of HIV deaths, across all model estimates, of 296 000 (range 229 023-420 000) if such a high level of disruption occurred. Interruption of ART would increase mother-to-child transmission of HIV by approximately 1·6 times. Although an interruption in the supply of ART drugs would have the largest impact of any potential disruptions, effects of poorer clinical care due to overstretched health facilities, interruptions of supply of other drugs such as co-trimoxazole, and suspension of HIV testing would all have a substantial effect on population-level mortality (up to a 1·06 times increase in HIV-related deaths over a 1-year period due to disruptions affecting 50% of the population compared with no disruption). Interruption to condom supplies and peer education would make populations more susceptible to increases in HIV incidence, although physical distancing measures could lead to reductions in risky sexual behaviour (up to 1·19 times increase in new HIV infections over a 1-year period if 50% of people are affected). INTERPRETATION: During the COVID-19 pandemic, the primary priority for governments, donors, suppliers, and communities should focus on maintaining uninterrupted supply of ART drugs for people with HIV to avoid additional HIV-related deaths. The provision of other HIV prevention measures is also important to prevent any increase in HIV incidence. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Anti-HIV Agents/supply & distribution , Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , HIV Infections/epidemiology , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology , Africa South of the Sahara/epidemiology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Condoms/supply & distribution , Coronavirus Infections/mortality , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Global Health/trends , HIV Infections/mortality , HIV Infections/transmission , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , Humans , Incidence , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Infectious Disease Transmission, Vertical/statistics & numerical data , Male , Pneumonia, Viral/mortality , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Sexual Behavior/psychology , Sexual Behavior/statistics & numerical data , Survival Analysis
7.
Postgrad Med J ; 96(1137): 408-411, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-639885

ABSTRACT

All animal life on earth is thought to have a common origin and have common genetic mechanisms. Evolution has enabled differentiation of species. Pathogens likewise have evolved within various species and mostly come to a settled dynamic equilibrium such that co-existence results (pathogens ideally should not kill their hosts). Problems arise when pathogens jump species because the new host had not developed any resistance. These infections from related species are known as zoonoses. COVID-19 is the latest example of a virus entering another species but HIV (and various strains of influenza) were previous examples.


Subject(s)
Disease Outbreaks/statistics & numerical data , HIV Infections/transmission , HIV-1/pathogenicity , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/pathogenicity , Zoonoses/transmission , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Evolution, Molecular , HIV Infections/virology , HIV-1/genetics , Humans , Pandemics , Phylogeny , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Primates/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Zoonoses/virology
9.
J Acquir Immune Defic Syndr ; 85(1): 66-72, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-596015

ABSTRACT

BACKGROUND: COVID-19 and its social responses threaten the health of people living with HIV. We conducted a rapid-response interview to assess COVID-19 protective behaviors of people living with HIV and the impact of their responses on HIV-related health care. METHOD: Men and women living with HIV (N = 162) aged 20-37 years participating in a longitudinal study of HIV treatment and care completed routine study measures and an assessment of COVID-19-related experiences. RESULTS: At baseline, most participants demonstrated HIV viremia, markers indicative of renal disorders, and biologically confirmed substance use. At follow-up, in the first month of responding to COVID-19, engaging in more social distancing behaviors was related to difficulty accessing food and medications and increased cancelation of health care appointments, both by self and providers. We observed antiretroviral therapy adherence had improved during the initial month of COVID-19 response. CONCLUSIONS: Factors that may pose added risk for COVID-19 severity were prevalent among people living with HIV, and those with greater risk factors did not practice more COVID-19 protective behaviors. Social distancing and other practices intended to mitigate the spread of COVID-19 interfered with HIV care, and impeded access to food and medications, although an immediate adverse impact on medication adherence was not evident. These results suggest social responses to COVID-19 adversely impacted the health care of people living with HIV, supporting continued monitoring to determine the long-term effects of co-occurring HIV and COVID-19 pandemics.


Subject(s)
Betacoronavirus , Coinfection/prevention & control , Coronavirus Infections/complications , Coronavirus Infections/prevention & control , HIV Infections/complications , Pandemics/prevention & control , Pneumonia, Viral/complications , Pneumonia, Viral/prevention & control , Adult , Coinfection/virology , Coronavirus Infections/epidemiology , Female , Food Supply , Georgia/epidemiology , HIV Infections/epidemiology , HIV Infections/virology , HIV-1 , Humans , Male , Pneumonia, Viral/epidemiology , Risk Factors , Viremia , Young Adult
10.
Postgrad Med J ; 96(1137): 417-421, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-595366

ABSTRACT

All animal life on earth is thought to have a common origin and have common genetic mechanisms. Evolution has enabled differentiation of species. Pathogens likewise have evolved within various species and mostly come to a settled dynamic equilibrium such that co-existence results (pathogens ideally should not kill their hosts). Problems arise when pathogens jump species because the new host had not developed any resistance. These infections from related species are known as zoonoses. COVID-19 is the latest example of a virus entering another species but HIV (and various strains of influenza) were previous examples. HIV entered the human population from monkeys in Africa. These two papers outline the underlying principle of HIV and the differing epidemiologies in Africa, the USA and in Edinburgh. The underlying immunosuppression of HIV in Africa was initially hidden behind common infections and HIV first came to world awareness in focal areas of the USA as a disease seemingly limited to gay males. The epidemic of intravenous drug abuse in Edinburgh was associated with overlapping epidemics of bloodborne viruses like hepatitis B, hepatitis C and HIV.


Subject(s)
Coinfection/virology , HIV Infections/physiopathology , Hepatitis B/physiopathology , Hepatitis C/physiopathology , Animals , Disease Outbreaks , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Hepatitis B/genetics , Hepatitis C/genetics , Humans , Needle Sharing/statistics & numerical data , Phylogeny , Substance Abuse, Intravenous/epidemiology , Zoonoses
11.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-437381

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL