Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
PLoS One ; 17(5): e0268143, 2022.
Article in English | MEDLINE | ID: covidwho-1841154

ABSTRACT

BACKGROUND: The China-Myanmar border area is considered a hot spot of active HIV-1 recombination in Southeast Asia. To better understand the characteristics of HIV-1 transmission in this area, a cross-sectional HIV-1 molecular epidemiological survey was conducted in Baoshan Prefecture of Yunnan Province. METHODS: In total, 708 newly reported HIV-1 cases in Baoshan Prefecture from 2019 to 2020 were included in this study. HIV-1 gag, pol and env genes were sequenced, and the spatial and demographic distributions of HIV-1 genotypes were analyzed. The characteristics of HIV-1 transmission were investigated using the HIV-1 molecular network method. RESULTS: In the 497 samples with genotyping results, 19 HIV-1 genotypes were found, with URFs being the predominant strains (30.2%, 150/497). The main circulating HIV-1 strains were mostly distributed in the northern area of Baoshan. URFs were more likely identified in Burmese individuals, intravenous drug users and those younger than 50 years old. CRF08_BC was more likely detected in farmers and those of Han ethnicity, CRF01_AE in the young and those of Han ethnicity, and CRF07_BC in the subpopulation with junior middle school education and higher. Moreover, CRF118_BC and CRF64_BC were more likely found in the subpopulation aged ≥40 years and ≥50 years, respectively. Among 480 individuals with pol sequence detection, 179 (37.3%) were grouped into 78 clusters, with Baoshan natives being more likely to be in the network. The proportion of the linked individuals showed significant differences when stratified by the regional origin, marital status, age and county of case reporting. In the molecular network, recent infections were more likely to occur among nonfarmers and individuals aged below 30 years. CONCLUSIONS: HIV-1 genetics has become complex in Baoshan. HIV-1 molecular network analysis provided transmission characteristics in the local area, and these findings provided information to prioritize transmission-reduction interventions.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , China/epidemiology , Cross-Sectional Studies , Genotype , HIV Infections/epidemiology , HIV-1/genetics , Humans , Middle Aged , Myanmar/epidemiology , Phylogeny
2.
Cochrane Database Syst Rev ; 8: CD013207, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1813441

ABSTRACT

BACKGROUND: The standard method of diagnosing HIV in infants and children less than 18 months is with a nucleic acid amplification test reverse transcriptase polymerase chain reaction test (NAT RT-PCR) detecting viral ribonucleic acid (RNA). Laboratory testing using the RT-PCR platform for HIV infection is limited by poor access, logistical support, and delays in relaying test results and initiating therapy in low-resource settings. The use of rapid diagnostic tests at or near the point-of-care (POC) can increase access to early diagnosis of HIV infection in infants and children less than 18 months of age and timely initiation of antiretroviral therapy (ART). OBJECTIVES: To summarize the diagnostic accuracy of point-of-care nucleic acid-based testing (POC NAT) to detect HIV-1/HIV-2 infection in infants and children aged 18 months or less exposed to HIV infection. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (until 2 February 2021), MEDLINE and Embase (until 1 February 2021), and LILACS and Web of Science (until 2 February 2021) with no language or publication status restriction. We also searched conference websites and clinical trial registries, tracked reference lists of included studies and relevant systematic reviews, and consulted experts for potentially eligible studies. SELECTION CRITERIA: We defined POC tests as rapid diagnostic tests conducted at or near the patient site. We included any primary study that compared the results of a POC NAT to a reference standard of laboratory NAT RT-PCR or total nucleic acid testing to detect the presence or absence of HIV infection denoted by HIV viral nucleic acids in infants and children aged 18 months or less who were exposed to HIV-1/HIV-2 infection. We included cross-sectional, prospective, and retrospective study designs and those that provided sufficient data to create the 2 × 2 table to calculate sensitivity and specificity. We excluded diagnostic case control studies with healthy controls. DATA COLLECTION AND ANALYSIS: We extracted information on study characteristics using a pretested standardized data extraction form. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool to assess the risk of bias and applicability concerns of the included studies. Two review authors independently selected and assessed the included studies, resolving any disagreements by consensus. The unit of analysis was the participant. We first conducted preliminary exploratory analyses by plotting estimates of sensitivity and specificity from each study on forest plots and in receiver operating characteristic (ROC) space. For the overall meta-analyses, we pooled estimates of sensitivity and specificity using the bivariate meta-analysis model at a common threshold (presence or absence of infection). MAIN RESULTS: We identified a total of 12 studies (15 evaluations, 15,120 participants). All studies were conducted in sub-Saharan Africa. The ages of included infants and children in the evaluations were as follows: at birth (n = 6), ≤ 12 months (n = 3), ≤ 18 months (n = 5), and ≤ 24 months (n = 1). Ten evaluations were field evaluations of the POC NAT test at the point of care, and five were laboratory evaluations of the POC NAT tests.The POC NAT tests evaluated included Alere q HIV-1/2 Detect qualitative test (recently renamed m-PIMA q HIV-1/2 Detect qualitative test) (n = 6), Xpert HIV-1 qualitative test (n = 6), and SAMBA HIV-1 qualitative test (n = 3). POC NAT pooled sensitivity and specificity (95% confidence interval (CI)) against laboratory reference standard tests were 98.6% (96.1 to 99.5) (15 evaluations, 1728 participants) and 99.9% (99.7 to 99.9) (15 evaluations, 13,392 participants) in infants and children ≤ 18 months. Risk of bias in the included studies was mostly low or unclear due to poor reporting. Five evaluations had some concerns for applicability for the index test, as they were POC tests evaluated in a laboratory setting, but there was no difference detected between settings in sensitivity (-1.3% (95% CI -4.1 to 1.5)); and specificity results were similar. AUTHORS' CONCLUSIONS: For the diagnosis of HIV-1/HIV-2 infection, we found the sensitivity and specificity of POC NAT tests to be high in infants and children aged 18 months or less who were exposed to HIV infection.


Subject(s)
HIV Infections/diagnosis , HIV-1/genetics , HIV-2/genetics , Point-of-Care Testing , Polymerase Chain Reaction/methods , Cross-Sectional Studies , Female , HIV-1/isolation & purification , HIV-2/isolation & purification , Humans , Infant , Infant, Newborn , Male , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
3.
Viruses ; 14(3)2022 03 18.
Article in English | MEDLINE | ID: covidwho-1765956

ABSTRACT

Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100-200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.


Subject(s)
HIV-1 , Viruses, Unclassified , Animals , Baculoviridae/genetics , DNA , HEK293 Cells , HIV-1/genetics , Humans , Mammals , Virion/genetics , Viruses, Unclassified/genetics
4.
J Infect Dis ; 225(5): 856-861, 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1666006

ABSTRACT

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Subject(s)
HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Viremia/drug therapy , Virus Latency , Vorinostat/therapeutic use
5.
Signal Transduct Target Ther ; 7(1): 7, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1606287

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.


Subject(s)
AIDS Vaccines/immunology , B-Cell Activating Factor/immunology , COVID-19 Vaccines/immunology , Cytidine Deaminase/immunology , HIV-1/immunology , Nanoparticles , SARS-CoV-2/immunology , Signal Transduction/immunology , Ubiquitin Thiolesterase/immunology , Ubiquitination/immunology , AIDS Vaccines/genetics , Animals , B-Cell Activating Factor/genetics , COVID-19 Vaccines/genetics , Cytidine Deaminase/genetics , HEK293 Cells , HIV-1/genetics , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , Signal Transduction/genetics , Ubiquitin Thiolesterase/genetics
6.
Nucleic Acids Res ; 49(17): e102, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1594917

ABSTRACT

Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.


Subject(s)
Algorithms , Computational Biology/methods , Haplotypes , High-Throughput Nucleotide Sequencing/methods , RNA Virus Infections/diagnosis , RNA Viruses/genetics , COVID-19/diagnosis , COVID-19/virology , Gene Frequency , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , Humans , Mutation , Polymorphism, Single Nucleotide , RNA Virus Infections/virology , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
PLoS One ; 16(12): e0260670, 2021.
Article in English | MEDLINE | ID: covidwho-1553776

ABSTRACT

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) genetic diversity and pre-treatment drug resistance (PDR) are major barriers to successful antiretroviral therapy (ART). In China, sexual intercourse is the most frequent route of HIV-1 transmission. However, few studies have analyzed PDR and transmission networks in detail among individuals in China with acute HIV-1 infection and their sexual contacts. METHODS: A cross-sectional study was conducted in Baoding City, Hebei Province, China from 2019-2020. CD4 T cell counts and viral loads were assessed and a HIV-1 genotypic PDR assay was developed in-house. Transmission networks were visualized using Cytoscape with a threshold genetic distance of 0.015 among HIV-1 subtypes. RESULTS: From 139 newly diagnosed and drug-naïve individuals with HIV-1, 132 pol gene sequences were obtained and revealed eight HIV-1 subtypes. Circulating recombinant form (CRF)01_AE was the most frequent subtype (53.0%, 70/132) followed by CRF07_BC (26.5%, 35/132), B (13.6%, 18/132), unique recombinant forms (2.3%, 3/132), CRF55_01B (1.5%, 2/132), CRF103_01B (1.5%, 2/132), CRF65_cpx (0.8%, 1/132), and C (0.8%, 1/132). A total of 47 pol gene sequences were used to generate 10 molecular transmission networks. The overall prevalence of PDR was 7.6% and that of PDR to non-nucleotide reverse transcriptase inhibitors was 6.1%. Of three transmission networks for PDR, two were closely associated with Beijing and Tianjin, while another was restricted to sequences determined in this study. CONCLUSIONS: These results demonstrate that during acute HIV-1 infection, PDR is transmitted in dynamic networks. This suggests that early detection, diagnosis, surveillance, and treatment are critical to effectively control HIV-1 spread.


Subject(s)
Drug Resistance, Viral/genetics , HIV Infections/transmission , Adolescent , Adult , Anti-Retroviral Agents/therapeutic use , China , Cross-Sectional Studies , Female , Genotype , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/isolation & purification , Humans , Male , Middle Aged , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Reverse Transcriptase Inhibitors/therapeutic use , Sequence Analysis, DNA , Young Adult , pol Gene Products, Human Immunodeficiency Virus/classification , pol Gene Products, Human Immunodeficiency Virus/genetics
9.
Viruses ; 13(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1485180

ABSTRACT

Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.


Subject(s)
HIV Infections/metabolism , Hyaluronan Receptors/metabolism , Leukosialin/metabolism , Membrane Glycoproteins/metabolism , Cell Membrane/metabolism , HIV Infections/genetics , HIV-1/genetics , HIV-1/metabolism , HIV-1/pathogenicity , Host-Pathogen Interactions , Humans , Hyaluronan Receptors/genetics , Leukosialin/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Virion/metabolism , Virus Assembly , Virus Attachment , gag Gene Products, Human Immunodeficiency Virus/metabolism
10.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
11.
STAR Protoc ; 1(3): 100209, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-1386743

ABSTRACT

We describe the production of single-cycle (sc) and replication-competent recombinant vesicular stomatitis viruses (rcVSVs) displaying heterologous envelope glycoproteins (Envs) on their surface. We prepare scVSVs by transiently expressing HIV-1 Envs or SARS-CoV-2 spike followed by infection of the cells with scVSV particles, which do not carry the vsv-g gene. To prepare rcVSVs, we replace the vsv-g with a specific env-encoding gene, transfect cells with multiple plasmids for production of the genomic RNA and viral proteins, and rescue replication-competent viruses.


Subject(s)
Recombinant Proteins , Spike Glycoprotein, Coronavirus , Vesicular Stomatitis/genetics , env Gene Products, Human Immunodeficiency Virus , Animals , COVID-19/virology , Cell Line , Cricetinae , HIV-1/genetics , Humans , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
12.
Cell Host Microbe ; 29(7): 1093-1110, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1385270

ABSTRACT

Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.


Subject(s)
HIV-1/genetics , Pandemics , SARS-CoV-2/genetics , COVID-19/immunology , Evolution, Molecular , Genome, Viral , Humans , Immune Evasion , Mutation , Receptors, Virus/genetics , Recombination, Genetic , Selection, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
13.
Retrovirology ; 18(1): 21, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1365362

ABSTRACT

HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.


Subject(s)
Antiretroviral Therapy, Highly Active/standards , Developing Countries/statistics & numerical data , Disease Reservoirs/virology , HIV Infections/drug therapy , Virus Latency/drug effects , Africa South of the Sahara/epidemiology , Antiretroviral Therapy, Highly Active/methods , Antiretroviral Therapy, Highly Active/statistics & numerical data , Cost of Illness , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV-1/genetics , HIV-1/pathogenicity , Humans
14.
Braz J Infect Dis ; 25(3): 101596, 2021.
Article in English | MEDLINE | ID: covidwho-1309170

ABSTRACT

Brazil is a huge continental country with striking geographic differences which are well illustrated in the HIV/AIDS epidemic. Contrasting with the significant decline in the national AIDS detection rate in the last decade, a linear growth has been reported in the Northern region. Despite its public health and epidemiologic importance, there is scarce HIV-1 molecular data from Northern Brazil. This scoping review summarizes recent epidemiologic data with special emphasis on HIV-1 genetic diversity and antiretroviral drug resistance mutations in patients from the seven Northern states of Brazil. Studies from the Northern Brazil on different HIV-1 genomic regions, mostly pol (protease/reverse transcriptase) sequences of naïve/antiretroviral treated adults/children were retrieved from PubMed/MEDLINE electronic database. These studies indicate a consistent molecular profile largely dominated by HIV-1 subtype B with minor contribution of subtypes F1 and C and infrequent detection of other subtypes (A1, D, K), recombinants (BF1, BC), circulating recombinant forms (CRF) as the new CRF90_BF1 and CRF02_AG-like, CRF28-29_BF-like, CRF31_BC-like, and a potential new CRF_BF1. This pattern indicates a founder effect of subtype B and the introduction of non-B-subtypes and recombinants probably generated in the Southern/Southeastern regions. In naïve populations transmitted drug resistance (TDR) can impact the outcome of first-line antiretroviral treatment and prophylactic/preventive regimens. In the Northern region TDR rates are moderate while patients failing highly active antiretroviral therapy (HAART) showed high prevalence of acquired drug resistance mutations. The limited HIV-1 molecular data from Northern Brazil reflects the great challenges to generate comprehensive scientific data in isolated, underprivileged areas. It also highlights the need to invest in local capacity building which supported by adequate infrastructure and funding can promote robust research activities to help reduce the scientific asymmetries in the Northern region. Currently the impacts of the overwhelming COVID-19 pandemic on the expanding HIV/AIDS epidemic in Northern Brazil deserves to be closely monitored.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Brazil , Drug Resistance , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2 , Sequence Analysis, DNA
15.
Viruses ; 13(6)2021 06 19.
Article in English | MEDLINE | ID: covidwho-1282642

ABSTRACT

To reduce global HIV-1 incidence, there is a need to understand and disentangle HIV-1 transmission dynamics and to determine the geographic areas and populations that act as hubs or drivers of HIV-1 spread. In Sub-Saharan Africa (sSA), the region with the highest HIV-1 burden, information about such transmission dynamics is sparse. Phylogenetic inference is a powerful method for the study of HIV-1 transmission networks and source attribution. In this review, we assessed available phylogenetic data on mixing between HIV-1 hotspots (geographic areas and populations with high HIV-1 incidence and prevalence) and areas or populations with lower HIV-1 burden in sSA. We searched PubMed and identified and reviewed 64 studies on HIV-1 transmission dynamics within and between risk groups and geographic locations in sSA (published 1995-2021). We describe HIV-1 transmission from both a geographic and a risk group perspective in sSA. Finally, we discuss the challenges facing phylogenetic inference in mixed epidemics in sSA and offer our perspectives and potential solutions to the identified challenges.


Subject(s)
HIV Infections/epidemiology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Phylogeny , Vulnerable Populations , Africa South of the Sahara/epidemiology , Databases, Genetic , Genotype , HIV Infections/transmission , Humans , Phylogeography , Population Surveillance , Prevalence , Risk Factors
16.
Viruses ; 13(6)2021 06 12.
Article in English | MEDLINE | ID: covidwho-1282640

ABSTRACT

There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Disease Reservoirs/virology , HIV Infections/virology , HIV-1/pathogenicity , Child , DNA, Viral/genetics , Female , HIV-1/genetics , Humans , Infectious Disease Transmission, Vertical , Pregnancy , Proviruses/genetics , Viral Load , Viremia/drug therapy
17.
ACS Appl Mater Interfaces ; 13(21): 24477-24486, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1219585

ABSTRACT

The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.


Subject(s)
Fluorescent Dyes/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Epithelial Cells/virology , Fluorescence , HEK293 Cells , HIV-1/genetics , Humans , Nasal Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
18.
Methods ; 201: 49-64, 2022 May.
Article in English | MEDLINE | ID: covidwho-1213579

ABSTRACT

Sensitive detection of viral nucleic acids is critically important for diagnosis and monitoring of the progression of infectious diseases such as those caused by SARS-CoV2, HIV-1, and other viruses. In HIV-1 infection cases, assessing the efficacy of treatment interventions that are superimposed on combination antiretroviral therapy (cART) has benefited tremendously from the development of sensitive HIV-1 DNA and RNA quantitation assays. Simian immunodeficiency virus (SIV) infection of Rhesus macaques is similar in many key aspects to human HIV-1 infection and consequently this non-human primate (NHP) model has and continues to prove instrumental in evaluating HIV prevention, treatment and eradication approaches. Cell and tissue associated HIV-1 viral nucleic acids have been found to serve as useful predictors of disease outcome and indicators of treatment efficacy, highlighting the value of and the need for sensitive detection of viruses in cells/tissues from infected individuals or animal models. However, viral nucleic acid detection and quantitation in such sample sources can often be complicated by high nucleic acid input (that is required to detect ultralow level viruses in, for example, cure research) or inhibitors, leading to reduced detection sensitivity and under-quantification, and confounded result interpretation. Here, we present a step-by-step procedure to quantitatively recover cell/tissue associated viral DNA and RNA, using SIV-infected Rhesus macaque cells and tissues as model systems, and subsequently quantify the viral DNA and RNA with an ultrasensitive SIV droplet digital PCR (ddPCR) assay and reverse transcription ddPCR (RT-ddPCR) assay, respectively, on the Raindance ddPCR platform. The procedure can be readily adapted for a broad range of applications where highly sensitive nucleic acid detection and quantitation are required.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Nucleic Acids , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , DNA, Viral/genetics , HIV-1/genetics , Macaca mulatta/genetics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Simian Acquired Immunodeficiency Syndrome/diagnosis , Simian Immunodeficiency Virus/genetics , Viral Load
19.
Emerg Microbes Infect ; 10(1): 894-904, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1209882

ABSTRACT

Neutralizing antibodies to SARS-CoV-2 have been shown to correlate with protection in animals and humans, disease severity, survival, and vaccine efficacy. With the ongoing large-scale vaccination in different countries and continuous surge of new variants of global concerns, a convenient, cost-effective and high-throughput neutralization test is urgently needed. Conventional SARS-CoV-2 neutralization test is tedious, time-consuming and requires a biosafety level 3 laboratory. Despite recent reports of neutralizations using different pseudoviruses with a luciferase or green fluorescent protein reporter, the laborious steps, inter-assay variability or high background limit their high-throughput potential. In this study we generated lentivirus-based pseudoviruses containing a monomeric infrared fluorescent protein reporter to develop neutralization assays. Similar tropism, infection kinetics and mechanism of entry through receptor-mediated endocytosis were found in the three pseudoviruses generated. Compared with pseudovirus D614, pseudovirus with D614G mutation had decreased shedding and higher density of S1 protein present on particles. The 50% neutralization titers to pseudoviruses D614 or D614G correlated with the plaque reduction neutralization titers to live SARS-CoV-2. The turn-around time of 48-72 h, minimal autofluorescence, one-step image quantification, expandable to 384-well, sequential readouts and dual quantifications by flow cytometry support its high-throughput and versatile applications at a non-reference and biosafety level 2 laboratory, in particular for assessing the neutralization sensitivity of new variants by sera from natural infection or different vaccinations during our fight against the pandemic.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Ammonium Chloride/pharmacology , Animals , Antigen-Antibody Reactions , Blotting, Western , COVID-19/blood , Chlorocebus aethiops , Convalescence , Defective Viruses/genetics , Genes, Reporter , Genetic Vectors/immunology , HEK293 Cells , HIV-1/genetics , Humans , Immunoglobulin G/immunology , Lentivirus/genetics , Mutagenesis, Site-Directed , Pandemics , Point Mutation , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
20.
Biotechnol Bioeng ; 118(7): 2660-2675, 2021 07.
Article in English | MEDLINE | ID: covidwho-1176262

ABSTRACT

The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.


Subject(s)
Vaccines, Virus-Like Particle , Virion , gag Gene Products, Human Immunodeficiency Virus , COVID-19 Vaccines , HEK293 Cells , HIV-1/genetics , Humans , Virion/chemistry , Virion/genetics , gag Gene Products, Human Immunodeficiency Virus/analysis , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL