Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Immunol ; 208(8): 1851-1856, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1855934

ABSTRACT

Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A2 Antigen , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genes, MHC Class I/genetics , Genes, MHC Class I/immunology , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Peptides/genetics , Peptides/immunology
2.
Front Immunol ; 12: 764949, 2021.
Article in English | MEDLINE | ID: covidwho-1674330

ABSTRACT

We identified SARS-CoV-2 specific antigen epitopes by HLA-A2 binding affinity analysis and characterized their ability to activate T cells. As the pandemic continues, variations in SARS-CoV-2 virus strains have been found in many countries. In this study, we directly assess the immune response to SARS-CoV-2 epitope variants. We first predicted potential HLA-A*02:01-restricted CD8+ T-cell epitopes of SARS-CoV-2. Using the T2 cell model, HLA-A*02:01-restricted T-cell epitopes were screened for their binding affinity and ability to activate T cells. Subsequently, we examined the identified epitope variations and analyzed their impact on immune response. Here, we identified specific HLA-A2-restricted T-cell epitopes in the spike protein of SARS-CoV-2. Seven epitope peptides were confirmed to bind with HLA-A*02:01 and potentially be presented by antigen-presenting cells to induce host immune responses. Tetramers containing these peptides could interact with specific CD8+ T cells from convalescent COVID-19 patients, and one dominant epitope (n-Sp1) was defined. These epitopes could activate and generate epitope-specific T cells in vitro, and those activated T cells showed cytolytic activity toward target cells. Meanwhile, n-Sp1 epitope variant 5L>F significantly decreased the proportion of specific T-cell activation; n-Sp1 epitope 8L>V variant showed significantly reduced binding to HLA-A*02:01 and decreased proportion of n-Sp1-specific CD8+ T cell, which potentially contributes to the immune escape of SARS-CoV-2. Our data indicate that the variation of a dominant epitope will cause the deficiency of HLA-A*02:01 binding and T-cell activation, which subsequently requires the formation of a new CD8+ T-cell immune response in COVID-19 patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Amino Acid Sequence , Antigen Presentation , Antigenic Variation , COVID-19/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Female , Humans , Immune Evasion , Lymphocyte Activation , Male , Middle Aged , Molecular Docking Simulation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
STAR Protoc ; 2(3): 100789, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1641729

ABSTRACT

Here, we describe the use of the artificial antigen-presenting cell (aAPC) system for the verification of T-cell epitopes. We purify and activate CD8+ T cells from blood samples from HLA-A2 that are negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CD8+ T cells are combined with peptide-loaded T2-A2 cells, which are then stained with a SARS-CoV-2-specific MHC-1 tetramer to identify specific HLA-A2-restricted T-cell epitopes. The use of aAPC and healthy donors means that only BSL2 lab conditions are needed. For details of the use and implementation of this protocol, please refer to Deng et al. (2021).


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Humans , Lymphocyte Activation
4.
J Immunol ; 208(3): 562-570, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1625582

ABSTRACT

Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunocompetence/drug effects , Lipid Metabolism , Adult , Aged , Aged, 80 and over , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , Cancer Vaccines/immunology , Cell Division , Female , Fenofibrate/pharmacology , Glucose/metabolism , HLA-A2 Antigen/immunology , Humans , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Influenza, Human/immunology , Lipid Metabolism/drug effects , Lymphocyte Activation , MART-1 Antigen/chemistry , MART-1 Antigen/immunology , Male , Middle Aged , Neoplasms/immunology , Peptide Fragments/immunology , Rosiglitazone/pharmacology , Single-Blind Method , Vaccination , Viral Vaccines/immunology , Young Adult
5.
Nat Commun ; 13(1): 19, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616981

ABSTRACT

T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Jurkat Cells , K562 Cells , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods
6.
Cell Rep ; 37(13): 110167, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1596401

ABSTRACT

Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , Cell Culture Techniques , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Viral/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
7.
Cell Mol Immunol ; 18(12): 2588-2608, 2021 12.
Article in English | MEDLINE | ID: covidwho-1500456

ABSTRACT

Since severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific T cells have been found to play essential roles in host immune protection and pathology in patients with coronavirus disease 2019 (COVID-19), this study focused on the functional validation of T cell epitopes and the development of vaccines that induce specific T cell responses. A total of 120 CD8+ T cell epitopes from the E, M, N, S, and RdRp proteins were functionally validated. Among these, 110, 15, 6, 14, and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; in addition, four epitopes from the S protein displayed one amino acid that was distinct from the current SARS-CoV-2 variants. Then, 31 epitopes restricted by the HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or poly (lactic-co-glycolic acid) nanoparticles, and these vaccines elicited robust and specific CD8+ T cell responses in HLA-A2/DR1 transgenic mice as well as wild-type mice. In contrast to previous research, this study established a modified DC-peptide-PBL cell coculture system using healthy donor PBMCs to validate the in silico predicted epitopes, provided an epitope library restricted by nine of the most prevalent HLA-A allotypes covering broad Asian populations, and identified the HLA-A restrictions of these validated epitopes using competitive peptide binding experiments with HMy2.CIR cell lines expressing the indicated HLA-A allotype, which initially confirmed the in vivo feasibility of 9- or 10-mer peptide cocktail vaccines against SARS-CoV-2. These data will facilitate the design and development of vaccines that induce antiviral CD8+ T cell responses in COVID-19 patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Animals , Cell Line , Drug Evaluation, Preclinical , Female , HLA-A2 Antigen/immunology , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Library , Vaccine Development
8.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444119

ABSTRACT

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Subject(s)
COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , CD8-Positive T-Lymphocytes/cytology , Crystallography, X-Ray , Cytokines/metabolism , Epitopes/chemistry , HLA-A2 Antigen/chemistry , Humans , Mutation , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Folding , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology
9.
J Leukoc Biol ; 110(6): 1171-1180, 2021 12.
Article in English | MEDLINE | ID: covidwho-1298499

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has now become a pandemic, and the etiologic agent is the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). T cell mediated immune responses play an important role in virus controlling; however, the understanding of the viral protein immunogenicity and the mechanisms of the induced responses are still limited. So, identification of specific epitopes and exploring their immunogenic properties would provide valuable information. In our study, we utilized the Immune Epitope Database and Analysis Resource and NetMHCpan to predict HLA-A2 restricted CD8+ T cell epitopes in structural proteins of SARS-CoV-2, and screened out 23 potential epitopes. Among them, 18 peptides showed strong or moderate binding with HLA-A2 with a T2A2 cell binding model. Next, the mixed peptides induced the increased expression of CD69 and highly expressed levels of IFN-γ and granzyme B in CD8+ T cells, indicating effective activation of specific CD8+ T cells. In addition, the peptide-activated CD8+ T cells showed significantly increased killing to the target cells. Furthermore, tetramer staining revealed that the activated CD8+ T cells mainly recognized seven epitopes. All together, we identified specific CD8+ T cell epitopes in SARS-CoV-2 structural proteins, which could induce the production of specific immune competent CD8+ T cells. Our work contributes to the understanding of specific immune responses and vaccine development for SARS-CoV-2.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , Viral Structural Proteins/immunology , Adult , Female , Humans , Lymphocyte Activation/immunology , Male
10.
J Immunol ; 206(5): 931-935, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1028951

ABSTRACT

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Vaccination/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Genetic Vectors/immunology , HLA-A2 Antigen/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
11.
Proc Natl Acad Sci U S A ; 117(39): 24384-24391, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-775833

ABSTRACT

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T cells in vitro, with CD4+ T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8+ T cell epitopes, A2/S269-277 and A2/Orf1ab3183-3191 Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/S269+CD8+ and A2/Orf1ab3183+CD8+ populations indicated that A2/S269+CD8+ T cells were detected at comparable frequencies (∼1.3 × 10-5) in acute and convalescent HLA-A*02:01+ patients. These frequencies were higher than those found in uninfected HLA-A*02:01+ donors (∼2.5 × 10-6), but low when compared to frequencies for influenza-specific (A2/M158) and Epstein-Barr virus (EBV)-specific (A2/BMLF1280) (∼1.38 × 10-4) populations. Phenotyping A2/S269+CD8+ T cells from COVID-19 convalescents ex vivo showed that A2/S269+CD8+ T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8+ T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/S269+CD8+ T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8+ T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8+ T cell immunity in COVID-19.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , HLA-A2 Antigen/immunology , Pneumonia, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Epitopes, T-Lymphocyte , Female , Humans , Immunologic Memory , Immunophenotyping , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Male , Middle Aged , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/immunology , Polyproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/chemistry , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL