Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Aging (Albany NY) ; 13(5): 6236-6246, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1154948

ABSTRACT

BACKGROUND: The immune responses, hyper-inflammation or immunosuppression, may be closely related to COVID-19 progression. We aimed to evaluate the changes of frequency of CD14+HLA-DRlo/neg MDSCs, a population of cells with potent immunosuppressive capacity, in COVID-19 patients. METHODS: The levels of CD14+HLA-DRlo/neg MDSCs were determined by flow cytometry in 27 COVID-19 patients, and their association with clinical characteristics and laboratory data were analyzed. RESULTS: The frequency of CD14+HLA-DRlo/neg MDSCs was elevated in COVID-19 patients, particularly severe patients. A follow-up comparison revealed a decline of CD14+HLA-DRlo/neg MDSCs percentages in most patients 1 day after testing negative for SARS-CoV-2 nucleic acid, but the levels of CD14+HLA-DRlo/neg MDSCs were still greater than 50.0% in 3 ICU patients 4-10 days after negative SARS-CoV-2 results. Elevated frequency of CD14+HLA-DRlo/neg MDSCs was positively correlated with oropharyngeal viral loads and length of hospital stay, while negatively correlated with lymphocyte counts and serum albumin. Moreover, strong correlations were observed between the frequency of CD14+HLA-DRlo/neg MDSCs and T cell subsets, NK cell counts, and B cell percentages. The frequency of CD14+HLA-DRlo/neg MDSCs could be used as a predictor of COVID-19 severity. CONCLUSIONS: A high frequency of CD14+HLA-DRlo/neg MDSCs, especially in severe patients, may indicate an immunoparalysis status and could be a predictor of disease severity and prognosis.


Subject(s)
COVID-19/immunology , HLA-DR Antigens/immunology , Lipopolysaccharide Receptors/immunology , Myeloid-Derived Suppressor Cells/pathology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/pathology , Female , HLA-DR Antigens/analysis , Humans , Immune Tolerance , Lipopolysaccharide Receptors/analysis , Male , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Prognosis , SARS-CoV-2/isolation & purification
3.
Cell Mol Life Sci ; 78(8): 3987-4002, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1130731

ABSTRACT

The COVID-19 pandemic poses a major burden on healthcare and economic systems across the globe. Even though a majority of the population develops only minor symptoms upon SARS-CoV-2 infection, a significant number are hospitalized at intensive care units (ICU) requiring critical care. While insights into the early stages of the disease are rapidly expanding, the dynamic immunological processes occurring in critically ill patients throughout their recovery at ICU are far less understood. Here, we have analysed whole blood samples serially collected from 40 surviving COVID-19 patients throughout their recovery in ICU using high-dimensional cytometry by time-of-flight (CyTOF) and cytokine multiplexing. Based on the neutrophil-to-lymphocyte ratio (NLR), we defined four sequential immunotypes during recovery that correlated to various clinical parameters, including the level of respiratory support at concomitant sampling times. We identified classical monocytes as the first immune cell type to recover by restoration of HLA-DR-positivity and the reduction of immunosuppressive CD163 + monocytes, followed by the recovery of CD8 + and CD4 + T cell and non-classical monocyte populations. The identified immunotypes also correlated to aberrant cytokine and acute-phase reactant levels. Finally, integrative analysis of cytokines and immune cell profiles showed a shift from an initially dysregulated immune response to a more coordinated immunogenic interplay, highlighting the importance of longitudinal sampling to understand the pathophysiology underlying recovery from severe COVID-19.


Subject(s)
COVID-19/immunology , Critical Illness , Leukocyte Count , SARS-CoV-2 , Acute-Phase Proteins/analysis , Antigens, CD/analysis , COVID-19/blood , Convalescence , Cytokines/blood , Female , Follow-Up Studies , HLA-DR Antigens/analysis , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Lymphocyte Count , Lymphocyte Subsets , Male , Middle Aged , Monocytes , Neutrophils , Pandemics , Prognosis , Prospective Studies
4.
Aging (Albany NY) ; 13(5): 6236-6246, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1112910

ABSTRACT

BACKGROUND: The immune responses, hyper-inflammation or immunosuppression, may be closely related to COVID-19 progression. We aimed to evaluate the changes of frequency of CD14+HLA-DRlo/neg MDSCs, a population of cells with potent immunosuppressive capacity, in COVID-19 patients. METHODS: The levels of CD14+HLA-DRlo/neg MDSCs were determined by flow cytometry in 27 COVID-19 patients, and their association with clinical characteristics and laboratory data were analyzed. RESULTS: The frequency of CD14+HLA-DRlo/neg MDSCs was elevated in COVID-19 patients, particularly severe patients. A follow-up comparison revealed a decline of CD14+HLA-DRlo/neg MDSCs percentages in most patients 1 day after testing negative for SARS-CoV-2 nucleic acid, but the levels of CD14+HLA-DRlo/neg MDSCs were still greater than 50.0% in 3 ICU patients 4-10 days after negative SARS-CoV-2 results. Elevated frequency of CD14+HLA-DRlo/neg MDSCs was positively correlated with oropharyngeal viral loads and length of hospital stay, while negatively correlated with lymphocyte counts and serum albumin. Moreover, strong correlations were observed between the frequency of CD14+HLA-DRlo/neg MDSCs and T cell subsets, NK cell counts, and B cell percentages. The frequency of CD14+HLA-DRlo/neg MDSCs could be used as a predictor of COVID-19 severity. CONCLUSIONS: A high frequency of CD14+HLA-DRlo/neg MDSCs, especially in severe patients, may indicate an immunoparalysis status and could be a predictor of disease severity and prognosis.


Subject(s)
COVID-19/immunology , HLA-DR Antigens/immunology , Lipopolysaccharide Receptors/immunology , Myeloid-Derived Suppressor Cells/pathology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/pathology , Female , HLA-DR Antigens/analysis , Humans , Immune Tolerance , Lipopolysaccharide Receptors/analysis , Male , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Prognosis , SARS-CoV-2/isolation & purification
5.
Science ; 369(6508): 1210-1220, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-704393

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Cytokines/blood , DNA, Bacterial/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Immunity , Immunity, Innate , Immunoglobulins/blood , Immunoglobulins/immunology , Inflammation Mediators/blood , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/blood , Male , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pandemics , SARS-CoV-2 , Signal Transduction , Single-Cell Analysis , Systems Biology , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL