Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Drug Metab Dispos ; 50(5): 576-590, 2022 05.
Article in English | MEDLINE | ID: covidwho-1832315

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (Paxlovid), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of coronavirus disease 2019 (COVID-19) in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies, are described herein. Plasma clearance was moderate in rats (27.2 ml/min per kg) and monkeys (17.1 ml/min per kg), resulting in half-lives of 5.1 and 0.8 hours, respectively. The corresponding oral bioavailability was moderate in rats (34%-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rats, monkeys, and humans with mean unbound fractions ranging from 0.310 to 0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rats, monkeys, and humans; prominent metabolites arose via cytochrome P450 (CYP450)-mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized = 0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetic studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon coadministration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism. SIGNIFICANCE STATEMENT: The manuscript describes the preclinical disposition, metabolism, and drug-drug interaction potential of PF-07321332 (nirmatrelvir), an orally active peptidomimetic-based inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease, which has been granted emergency use authorization by multiple regulatory agencies around the globe for the treatment of coronavirus disease 2019 (COVID-19) in COVID-19-positive adults and pediatric patients who are at high risk for progression to severe COVID-19, including hospitalization or death.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Oral , Animals , COVID-19/drug therapy , Child , Cytochrome P-450 CYP3A/metabolism , Haplorhini , Humans , Lactams , Leucine , Microsomes, Liver/metabolism , Nitriles , Peptide Hydrolases/metabolism , Proline , Rats , Ritonavir/metabolism
2.
Animal Model Exp Med ; 5(1): 89-93, 2022 02.
Article in English | MEDLINE | ID: covidwho-1712020

ABSTRACT

BACKGROUND: The Omicron (B.1.1.529) SARS-COV-2 variant has raised serious concerns because of its unprecedented rapid rate of spreading and the fact that there are 36 mutations in the spike protein. Since the vaccine-induced neutralizing antibody targets are the spike protein, this may lead to the possibility of vaccine-induced humoral immunity escape. METHODS: We measured the neutralizing activity in vitro for Omicron and compared this with wild type (WH-09) and Delta variants in human and monkey sera from different types of immunity. The monkey sera samples were collected at 1 and 3 months post three-dose inactivated (PiCoVacc) and recombinant protein (ZF2001) vaccination. Human sera were collected from 1 month post three-dose inactivated vaccination. RESULTS: In inactivated vaccine sera, at 1/3 months post three-dose, geometric mean titers (GMTs) of neutralization antibody (NAb) against the Omicron variant were 4.9/5.2-fold lower than those of the wild type. In recombinant protein vaccine sera, GMTs of NAb against Omicron were 15.7/8.9-fold lower than those of the wild type. In human sera, at 1 month post three-dose inactivated vaccination, GMTs of NAb against Omicron were 3.1-fold lower than those of the wild type. CONCLUSION: This study demonstrated that despite a reduction in neutralization titers, cross-neutralizing activity against Omicron and Delta variants was still observed after three doses of inactivated and recombinant protein vaccination.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19 , Cross Reactions , SARS-CoV-2 , Animals , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Haplorhini , Humans , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
3.
Vopr Virusol ; 66(6): 425-433, 2022 01 08.
Article in Russian | MEDLINE | ID: covidwho-1620062

ABSTRACT

INTRODUCTION: The relevance of studying the circulation of human respiratory viruses among laboratory primates is associated with the need to test vaccines and antiviral drugs against these infections on monkeys.The aim of this work was to study the prevalence of serological and molecular markers of human respiratory viral infections in laboratory primates born at the Adler Primate Center and in imported monkeys. MATERIAL AND METHODS: Blood serum samples (n = 1971) and lung autopsy material (n = 26) were obtained from different monkey species. These samples were tested for the presence of serological markers of measles, parainfluenza (PI) types 1, 2, 3, influenza A and B, respiratory syncytial (RS) and adenovirus infections using enzyme immunoassay (ELISA). Detection of RS virus, metapneumovirus, PI virus types 1-4, rhinovirus, coronavirus, and adenoviruses B, C, E and bocavirus nucleic acids in this material was performed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS AND DISCUSSION: The overall prevalence of antibodies (Abs) among all monkeys was low and amounted 11.3% (95% CI: 9.2-13.7%, n = 811) for measles virus, 8.9% (95% CI: 6.2-12.2%, n = 381) for PI type 3 virus, 2.5% (95% CI: 0.8-5.6%, n = 204) for PI type 1 virus, and 7.7% (95% CI: 3.8-13.7%, n = 130) for adenoviruses. When testing 26 autopsy lung samples from monkeys of different species that died from pneumonia, 2 samples from Anubis baboons (Papio аnubis) were positive for of parainfluenza virus type 3 RNA. CONCLUSION: Our data suggest the importance of the strict adherence to the terms of quarantine and mandatory testing of monkey sera for the presence of IgM antibodies to the measles virus that indicate the recent infection. The role of PI virus type 3 in the pathology of the respiratory tract in Anubis baboons has been established.


Subject(s)
Haplorhini/virology , Monkey Diseases/epidemiology , Respiratory Tract Infections/veterinary , Adenoviridae , Animals , Biomarkers , Coronavirus , Humans , Immunoglobulin G/blood , Infant , Monkey Diseases/virology , Prevalence , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Russia/epidemiology
4.
EBioMedicine ; 75: 103806, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611694

ABSTRACT

BACKGROUND: To identify host genetic variants (SNPs) associated with COVID-19 disease severity, a number of genome-wide association studies (GWAS) have been conducted. Since most of the identified variants are located at non-coding regions, such variants are presumed to affect the expression of neighbouring genes, thereby influencing COVID-19 disease severity. However, it remains largely unknown which genes are influenced by such COVID-19 GWAS loci. METHODS: CRISPRi (interference)-mediated gene expression analysis was performed to identify genes functionally regulated by COVID-19 GWAS loci by targeting regions near the loci (SNPs) in lung epithelial cell lines. The expression of CRISPRi-identified genes was investigated using COVID-19-contracted human and monkey lung single-nucleus/cell (sn/sc) RNA-seq datasets. FINDINGS: CRISPRi analysis indicated that a region near rs11385942 at chromosome 3p21.31 (locus of highest significance with COVID-19 disease severity at intron 5 of LZTFL1) significantly affected the expression of LZTFL1 (P<0.05), an airway cilia regulator. A region near rs74956615 at chromosome 19p13.2 (locus located at the 3' untranslated exonic region of RAVER1), which is associated with critical illness in COVID-19, affected the expression of RAVER1 (P<0.05), a coactivator of MDA5 (IFIH1), which induces antiviral response genes, including ICAM1. The sn/scRNA-seq datasets indicated that the MDA5/RAVER1-ICAM1 pathway was activated in lung epithelial cells of COVID-19-resistant monkeys but not those of COVID-19-succumbed humans. INTERPRETATION: Patients with risk alleles of rs11385942 and rs74956615 may be susceptible to critical illness in COVID-19 in part through weakened airway viral clearance via LZTFL1-mediated ciliogenesis and diminished antiviral immune response via the MDA5/RAVER1 pathway, respectively. FUNDING: NIH.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genetic Loci , Polymorphism, Single Nucleotide , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , Transcription Factors/genetics , Animals , COVID-19/metabolism , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/metabolism , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 3/metabolism , Databases, Nucleic Acid , Genome-Wide Association Study , Haplorhini , Humans , RNA-Seq , Ribonucleoproteins/metabolism , SARS-CoV-2/metabolism , Transcription Factors/metabolism
5.
Sci Rep ; 11(1): 23465, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1556248

ABSTRACT

Human coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/chemistry , Antiviral Agents/chemistry , Coronavirus NL63, Human/enzymology , Pyrazines/chemistry , RNA-Dependent RNA Polymerase/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Amides/metabolism , Amides/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Cell Culture Techniques , Cell Line , Coronavirus NL63, Human/physiology , Haplorhini , Humans , Molecular Docking Simulation , Pyrazines/metabolism , Pyrazines/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Virus Replication/drug effects
6.
Nat Commun ; 12(1): 5000, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361637

ABSTRACT

The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , HEK293 Cells , Haplorhini , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vero Cells , Virus Activation
7.
Mol Inform ; 40(9): e2100031, 2021 09.
Article in English | MEDLINE | ID: covidwho-1351262

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to be a global threat, causing millions of deaths worldwide. SARS-CoV-2 is an enveloped virus with spike (S) glycoproteins conferring binding to the host cell's angiotensin-converting enzyme 2 (ACE2), which is critical for cellular entry. The host range of the virus extends well beyond humans and non-human primates. Natural and experimental infections have confirmed the high susceptibility of cats, ferrets, and Syrian hamsters, whereas dogs, mice, rats, pigs, and chickens are refractory to SARS-CoV-2 infection. To investigate the underlying reason for the variable susceptibility observed in different species, we have developed molecular descriptors to efficiently analyse dynamic simulation models of complexes between SARS-CoV-2 S and ACE2. Our extensive analyses represent the first systematic structure-based approach that allows predictions of species susceptibility to SARS-CoV-2 infection.


Subject(s)
SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cats , Dogs , Ferrets , Haplorhini , Humans , Mesocricetus , Mice , Molecular Dynamics Simulation , Rats , SARS-CoV-2/metabolism , Species Specificity , Swine
10.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1275187

ABSTRACT

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Cytokines/metabolism , Female , Haplorhini , Humans , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Protein Domains , RNA, Guide/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Viral Load , Virus Replication
11.
J Med Virol ; 93(7): 4469-4479, 2021 07.
Article in English | MEDLINE | ID: covidwho-1263099

ABSTRACT

The outbreak of atypical pneumonia (coronavirus disease 2019 [COVID-19]) has been a global pandemic and has caused severe losses to the global economy. The virus responsible for COVID-9, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has a spike glycoprotein (S protein) that binds angiotensin-converting enzyme 2 (ACE2) present on host cell membranes to gain entry. Based on the full-length human ACE2 cryo-EM structure, we generated homology models of full-length ACE2 proteins from various species (gorilla, monkey, pig, bovine, sheep, cat, dog, mouse, and rat). Although these ACE2 molecules were found to share similar overall structures, their S-ACE2 interface residues differed. These differences likely result in variations in the ACE2 binding affinities to the SARS-CoV-2 S protein. The highest affinities are predicted for human, gorilla, and monkey, while mouse and rat ACE2 are predicted to have the lowest affinities. Cat ACE2 is predicted to have a lower S protein affinity than dog ACE2. Although affinity is not the only factor that affects viral susceptibility, it is one of the most important factors. Thus, we believe that care should be taken with these animals to prevent the spread of SARS-CoV-2 among animal and human populations.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites/physiology , COVID-19/virology , Cats , Cattle , Computer Simulation , Disease Susceptibility , Dogs , Gorilla gorilla , Haplorhini , Humans , Mice , Models, Molecular , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Binding/physiology , Protein Conformation , Rats , SARS-CoV-2/metabolism , Sequence Alignment , Sheep , Swine
12.
J Med Primatol ; 50(4): 225-227, 2021 08.
Article in English | MEDLINE | ID: covidwho-1243620

ABSTRACT

This report aims to analyze the experimental monkey shortage generated by the COVID-19 lockdown. The supply capability of the monkey breeding farms is insufficient to meet demand, and the sales prices have skyrocketed since 2018. The contradiction will be further aggravated with import prohibition although the countermeasures suggested.


Subject(s)
Breeding/statistics & numerical data , COVID-19 , Haplorhini , Models, Animal , Animals , China
13.
Science ; 372(6541): 450-455, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1238478
14.
Sci Rep ; 11(1): 10617, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1236094

ABSTRACT

Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/metabolism , COVID-19/prevention & control , Protein Engineering/methods , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/enzymology , COVID-19/virology , Cell Line , Drug Design , Haplorhini , Humans , Protein Binding , Protein Structural Elements , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
15.
Mol Immunol ; 135: 147-164, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198989

ABSTRACT

Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Disease Models, Animal , SARS-CoV-2/immunology , Animals , COVID-19/pathology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Haplorhini , Humans
16.
J Med Virol ; 93(7): 4469-4479, 2021 07.
Article in English | MEDLINE | ID: covidwho-1146024

ABSTRACT

The outbreak of atypical pneumonia (coronavirus disease 2019 [COVID-19]) has been a global pandemic and has caused severe losses to the global economy. The virus responsible for COVID-9, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has a spike glycoprotein (S protein) that binds angiotensin-converting enzyme 2 (ACE2) present on host cell membranes to gain entry. Based on the full-length human ACE2 cryo-EM structure, we generated homology models of full-length ACE2 proteins from various species (gorilla, monkey, pig, bovine, sheep, cat, dog, mouse, and rat). Although these ACE2 molecules were found to share similar overall structures, their S-ACE2 interface residues differed. These differences likely result in variations in the ACE2 binding affinities to the SARS-CoV-2 S protein. The highest affinities are predicted for human, gorilla, and monkey, while mouse and rat ACE2 are predicted to have the lowest affinities. Cat ACE2 is predicted to have a lower S protein affinity than dog ACE2. Although affinity is not the only factor that affects viral susceptibility, it is one of the most important factors. Thus, we believe that care should be taken with these animals to prevent the spread of SARS-CoV-2 among animal and human populations.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites/physiology , COVID-19/virology , Cats , Cattle , Computer Simulation , Disease Susceptibility , Dogs , Gorilla gorilla , Haplorhini , Humans , Mice , Models, Molecular , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Binding/physiology , Protein Conformation , Rats , SARS-CoV-2/metabolism , Sequence Alignment , Sheep , Swine
17.
Zool Res ; 42(2): 161-169, 2021 Mar 18.
Article in English | MEDLINE | ID: covidwho-1070034

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) continue to impact countries worldwide. At present, inadequate diagnosis and unreliable evaluation systems hinder the implementation and development of effective prevention and treatment strategies. Here, we conducted a horizontal and longitudinal study comparing the detection rates of SARS-CoV-2 nucleic acid in different types of samples collected from COVID-19 patients and SARS-CoV-2-infected monkeys. We also detected anti-SARS-CoV-2 antibodies in the above clinical and animal model samples to identify a reliable approach for the accurate diagnosis of SARS-CoV-2 infection. Results showed that, regardless of clinical symptoms, the highest detection levels of viral nucleic acid were found in sputum and tracheal brush samples, resulting in a high and stable diagnosis rate. Anti-SARS-CoV-2 immunoglobulin M (IgM) and G (IgG) antibodies were not detected in 6.90% of COVID-19 patients. Furthermore, integration of nucleic acid detection results from the various sample types did not improve the diagnosis rate. Moreover, dynamic changes in SARS-CoV-2 viral load were more obvious in sputum and tracheal brushes than in nasal and throat swabs. Thus, SARS-CoV-2 nucleic acid detection in sputum and tracheal brushes was the least affected by infection route, disease progression, and individual differences. Therefore, SARS-CoV-2 nucleic acid detection using lower respiratory tract samples alone is reliable for COVID-19 diagnosis and study.


Subject(s)
COVID-19 Testing/veterinary , COVID-19/diagnosis , SARS-CoV-2/genetics , Animals , Antibodies, Viral , Disease Models, Animal , Haplorhini , Humans , Longitudinal Studies , Pharynx/virology , Predictive Value of Tests , SARS-CoV-2/immunology , Specimen Handling , Sputum/virology
19.
Mucosal Immunol ; 13(6): 877-891, 2020 11.
Article in English | MEDLINE | ID: covidwho-724735

ABSTRACT

COVID-19 is causing a major once-in-a-century global pandemic. The scientific and clinical community is in a race to define and develop effective preventions and treatments. The major features of disease are described but clinical trials have been hampered by competing interests, small scale, lack of defined patient cohorts and defined readouts. What is needed now is head-to-head comparison of existing drugs, testing of safety including in the background of predisposing chronic diseases, and the development of new and targeted preventions and treatments. This is most efficiently achieved using representative animal models of primary infection including in the background of chronic disease with validation of findings in primary human cells and tissues. We explore and discuss the diverse animal, cell and tissue models that are being used and developed and collectively recapitulate many critical aspects of disease manifestation in humans to develop and test new preventions and treatments.


Subject(s)
Antibodies, Viral/biosynthesis , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Disease Models, Animal , Pneumonia, Viral/immunology , Viral Vaccines/biosynthesis , Angiotensin-Converting Enzyme 2 , Animals , Animals, Genetically Modified , Antiviral Agents/chemical synthesis , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Cats , Chiroptera , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cricetulus , Female , Ferrets , Haplorhini , Humans , Male , Mice , Organoids/drug effects , Organoids/immunology , Organoids/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Species Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/administration & dosage
20.
Curr Opin Virol ; 44: 97-111, 2020 10.
Article in English | MEDLINE | ID: covidwho-695561

ABSTRACT

Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.


Subject(s)
Communicable Diseases, Emerging/immunology , Communicable Diseases, Emerging/transmission , Killer Cells, Natural/immunology , Viral Zoonoses/immunology , Viral Zoonoses/transmission , Animals , COVID-19/immunology , COVID-19/transmission , Chiroptera/virology , Haplorhini/virology , Humans , Rodentia/virology , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/transmission
SELECTION OF CITATIONS
SEARCH DETAIL