Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
FASEB J ; 37(5): e22919, 2023 05.
Article in English | MEDLINE | ID: covidwho-2306604

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood. In order to gain insight into this process, we studied the neuropathological effects of open reading frame 3a (ORF3a), a SARS-CoV-2 accessory protein that is a key pathological factor of the virus. Forced ORF3a brain expression in mice caused the rapid onset of neurological impairment, neurodegeneration, and neuroinflammation-key neuropathological features found in coronavirus disease (COVID-19, which is caused by SARS-CoV-2 infection). Furthermore, ORF3a expression blocked autophagy progression in the brain and caused the neuronal accumulation of α-synuclein and glycosphingolipids, all of which are linked to neurodegenerative disease. Studies with ORF3-expressing HeLa cells confirmed that ORF3a disrupted the autophagy-lysosomal pathway and blocked glycosphingolipid degradation, resulting in their accumulation. These findings indicate that, in the event of neuroinvasion by SARS-CoV-2, ORF3a expression in brain cells may drive neuropathogenesis and be an important mediator of both short- and long-term neurological manifestations of COVID-19.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/pathology , Neurodegenerative Diseases/pathology , HeLa Cells , Open Reading Frames , Sphingolipids , Brain/pathology , Homeostasis , Lysosomes , Autophagy
2.
ACS Nano ; 17(9): 8598-8612, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2300108

ABSTRACT

Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.


Subject(s)
Coronavirus , Humans , Biomimetics , HeLa Cells , Peptides/pharmacology , Peptides/chemistry , Phospholipids/chemistry , Lipid Bilayers/chemistry , Cholesterol
3.
Vet Microbiol ; 280: 109709, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297201

ABSTRACT

Infectious bronchitis virus (IBV) has restricted cell and tissue tropism. IBVs, except the Beaudette strain, can infect and replicate in chicken embryos, primary chicken embryo kidneys, and primary chicken kidney cells, only. The limited viral cell tropism of IBV substantially hinders in vitro cell-based research on pathogenic mechanisms and vaccine development. Herein, the parental H120 vaccine strain was serially passaged for five generations in chicken embryos, 20 passages in CK cells and 80 passages in Vero cells. This passaging yielded a Vero cell-adapted strain designated HV80. To further understand viral evolution, serial assessments of infection, replication, and transmission in Vero cells were performed for the viruses obtained every tenth passage. The ability to form syncytia and the replication efficiency significantly after the 50th passage (strain HV50). HV80 also displayed tropism extension to DF-1, BHK-21, HEK-293 T, and HeLa cells. Whole genome sequencing of viruses from every tenth generation revealed a total of 19 amino acid point mutations in the viral genome by passage 80, nine of which occurred in the S gene. The second furin cleavage site appeared in viral evolution and may be associated with cell tropism extension of HV80.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Viral Vaccines , Chlorocebus aethiops , Chick Embryo , Animals , Humans , Vero Cells , Infectious bronchitis virus/genetics , HeLa Cells , HEK293 Cells , Chickens , Coronavirus Infections/veterinary
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2257144

ABSTRACT

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , HeLa Cells , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/genetics , Oncogenes , Cell Proliferation , Gene Expression , Ether-A-Go-Go Potassium Channels/genetics
5.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: covidwho-2267800

ABSTRACT

Recently, lysine lactylation (Kla), a novel post-translational modification (PTM), which can be stimulated by lactate, has been found to regulate gene expression and life activities. Therefore, it is imperative to accurately identify Kla sites. Currently, mass spectrometry is the fundamental method for identifying PTM sites. However, it is expensive and time-consuming to achieve this through experiments alone. Herein, we proposed a novel computational model, Auto-Kla, to quickly and accurately predict Kla sites in gastric cancer cells based on automated machine learning (AutoML). With stable and reliable performance, our model outperforms the recently published model in the 10-fold cross-validation. To investigate the generalizability and transferability of our approach, we evaluated the performance of our models trained on two other widely studied types of PTM, including phosphorylation sites in host cells infected with SARS-CoV-2 and lysine crotonylation sites in HeLa cells. The results show that our models achieve comparable or better performance than current outstanding models. We believe that this method will become a useful analytical tool for PTM prediction and provide a reference for the future development of related models. The web server and source code are available at http://tubic.org/Kla and https://github.com/tubic/Auto-Kla, respectively.


Subject(s)
COVID-19 , Lysine , Humans , Lysine/metabolism , HeLa Cells , SARS-CoV-2/metabolism , Machine Learning
6.
Sci Total Environ ; 867: 161609, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242699

ABSTRACT

The outbreak of the COVID-19 has resulted in a great increase in the use of H2O2 disinfectant, which is listed as one of the commonly used disinfectants for COVID-19 by the U.S. Environmental Protection Agency. However, excessive use of H2O2 disinfectant can threaten human health and damage the water environment. Therefore, it's of great importance to detect H2O2 in aquatic environments and biological systems. Herein, we proposed a novel ESIPT ratio fluorescent probe (named probe 1) for detecting H2O2 in water environment and biosystems. Probe 1 emits blue fluorescence as the introduction of the phenylboronic acid disrupts the ESIPT process. After reacting with H2O2, the phenylboronic acid is oxidatively removed, and the ESIPT process is restored, which makes the fluorescence emission wavelength red-shifted. Probe 1 exhibited a short response time, high sensitivity, and a large Stokes shift to H2O2. Importantly, it has been successfully used to detect H2O2 not only in actual water samples, but also endogenous and exogenous H2O2 in living cells. The characteristics of probe 1 have a wide range of applications in environmental and biological systems.


Subject(s)
COVID-19 , Fluorescent Dyes , Humans , HeLa Cells , Hydrogen Peroxide , Water
7.
Viruses ; 15(2)2023 01 27.
Article in English | MEDLINE | ID: covidwho-2216972

ABSTRACT

Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2, which requires cleavage of its spike protein (S) at two sites: S1/S2 and S2'. This study investigates the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. The assays used were cell-to-cell fusion in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increased cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduced cell-to-cell fusion by promoting the cellular degradation of ACE2. SKI-1 activity led to enhanced S2' formation, which was attributed to increased metalloprotease activity as a response to enhanced cholesterol levels via activated SREBP-2. However, high metalloprotease activity resulted in the shedding of S2' into a new C-terminal fragment (S2″), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2″ formation abolished S2' and cell-to-cell fusion, as well as pseudoparticle entry, indicating that the formation of S2″ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested the binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms.


Subject(s)
COVID-19 , Proprotein Convertase 9 , Humans , Angiotensin-Converting Enzyme 2 , Cell Fusion , HeLa Cells , Metalloproteases , Proprotein Convertase 9/genetics , SARS-CoV-2 , Sterol Regulatory Element Binding Protein 1
8.
Sci Rep ; 12(1): 20639, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2133649

ABSTRACT

Aiming to fill a gap in the literature, we aimed to identify the most promising EOs blocking in vitro cellular entry of SARS-CoV-2 delta variant without conferring human cytotoxicity and provide insights into the influence of their composition on these activities. Twelve EOs were characterized by gas chromatography coupled to mass spectrometry. The antiviral and cytotoxicity activities were determined using the cell-based pseudoviral entry with SARS-CoV-2 delta pseudovirus and the XTT assay in HeLa cells expressing human angiotensin-converting enzyme 2 (HeLa ACE-2), respectively. Syzygium aromaticum, Cymbopogon citratus, Citrus limon, Pelargonium graveolens, Origanum vulgare, "Illicium verum", and Matricaria recutita showed EC50 lowered or close to 1 µg/mL but also the lowest CC50 (0.20-1.70 µg/mL), except "I. verum" (30.00 µg/mL). Among these, "I. verum", C. limon, P. graveolens and S. aromaticum proved to be promising alternatives for SARS-CoV-2 delta variant inhibition (therapeutic index above 4), which possibly was related to the compounds (E)-anetole, limonene and beta-pinene, citronellol, and eugenol, respectively.


Subject(s)
COVID-19 , Oils, Volatile , Humans , Oils, Volatile/pharmacology , SARS-CoV-2 , HeLa Cells , Gas Chromatography-Mass Spectrometry
9.
Viruses ; 14(10)2022 09 25.
Article in English | MEDLINE | ID: covidwho-2043988

ABSTRACT

Not all antibodies against SARS-CoV-2 inhibit viral entry, and hence, infection. Neutralizing antibodies are more likely to reflect real immunity; however, certain tests investigate protein/protein interaction rather than the fusion event. Viral and pseudoviral entry assays detect functionally active antibodies but are limited by biosafety and standardization issues. We have developed a Spike/ACE2-dependent fusion assay, based on a split luciferase. Hela cells stably transduced with Spike and a large fragment of luciferase were co-cultured with Hela cells transduced with ACE2 and the complementary small fragment of luciferase. Cell fusion occurred rapidly allowing the measurement of luminescence. Light emission was abolished in the absence of Spike and reduced in the presence of proteases. Sera from COVID-19-negative, non-vaccinated individuals or from patients at the moment of first symptoms did not lead to a significant reduction of fusion. Sera from COVID-19-positive patients as well as from vaccinated individuals reduced the fusion. This assay was more correlated to pseudotyped-based entry assay rather than serology or competitive ELISA. In conclusion, we report a new method measuring fusion-inhibitory antibodies in serum, combining the advantage of a complete Spike/ACE2 interaction active on entry with a high degree of standardization, easily allowing automation in a standard bio-safety environment.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , HeLa Cells , Antibodies, Viral , Peptidyl-Dipeptidase A , Antibodies, Neutralizing , Vaccination
10.
Mar Drugs ; 20(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2023891

ABSTRACT

Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study, siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to 55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the degree of ionization of the polycations at pH 7.4. This approach made obtaining siRNA nanocarriers with small sizes (100-200 nm), positive surface charge and enhanced colloidal stability (up to 24 h) at physiological conditions of pH (7.4) and ionic strength (150 mmol L-1) possible. Moreover, the PEGylation improved the stability of the nanoparticles, which maintained their colloidal stability and nanometric sizes even in an albumin-containing medium. The chitosan-derivatives displayed non-cytotoxic effects in both fibroblasts (NIH/3T3) and macrophages (RAW 264.7) at high N/P ratios and polymer concentrations (up to 0.5 g L-1). Confocal microscopy showed a successful uptake of nanocarriers by RAW 264.7 macrophages and a promising ability to silence green fluorescent protein (GFP) in HeLa cells. These results were confirmed by a high level of tumor necrosis factor-α (TNFα) knockdown (higher than 60%) in LPS-stimulated macrophages treated with the siRNA-loaded nanoparticles even in the FBS-containing medium, findings that reveal a good correlation between the degree of ionization of the polycations and the physicochemical properties of nanocarriers. Overall, this study provides an approach to enhance siRNA condensation by chitosan-based carriers and highlights the potential of these nanocarriers for in vivo studies.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , HeLa Cells , Humans , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , RNA, Small Interfering/metabolism
11.
Anal Chem ; 94(35): 12095-12102, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2016504

ABSTRACT

Lipid droplets (LDs), which are ubiquitous organelles existing in almost all eukaryotic cells, have attracted a lot of attention in the field of cell biology over the last decade. For the biological study of LDs via fluorescence imaging, the superior LD fluorescent probes with environmental polarity-sensitive character are highly desired and powerful but are very scarce. Herein, we have newly developed such a kind of fluorescent probe named LDs-Red which enables us to visualize LDs and to further reveal their polarity information. This fluorescent probe displays the advantages of intense red/near-infrared emission, high LD staining specificity, and good photostability; thus, it would be very useful for LD fluorescence imaging application. As a result, the three-dimensional confocal imaging to visualize spatial distribution of LDs and the multicolor confocal imaging to simultaneously observe LDs and other cellular organelles have been realized using this new LD fluorescent probe. Furthermore, the polarity-sensitive emission character of this probe enables us to quantitatively determine the LD polarity via spectral scan imaging. Consequently, the cancer cells (HepG2, HeLa, and Panc02) displaying lower polarity of LDs than the normal cells (L929, U251, and HT22) have been systematically demonstrated. In addition, this polarity-sensitive probe displaying shorter fluorescence wavelengths in cancer cells than in normal cells has an important and potential ability to distinguish them.


Subject(s)
Fluorescent Dyes , Lipid Droplets , HeLa Cells , Humans , Optical Imaging , Staining and Labeling
12.
J Control Release ; 350: 256-270, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991137

ABSTRACT

Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Animals , Antidepressive Agents, Tricyclic , Cations , Cattle , Drug Combinations , Drug Repositioning , HeLa Cells , Humans , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Nortriptyline , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rabbits
13.
Structure ; 30(10): 1432-1442.e4, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-1967156

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and human coronavirus (hCoV)-NL63 utilize ACE2 as the functional receptor for cell entry, which leads to zoonotic infection. Horses (Equus caballus) attracted our attention because the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 and SARS-CoV-2-related coronaviruses bind equine ACE2 (eACE2) with high affinity. Here we show that eACE2 binds the RBDs of these three coronaviruses and also SARS-CoV-2 variants but with lower affinities compared with human ACE2 (hACE2). Structural analysis and mutation assays indicated that eACE2-H41 accounts for the lower binding affinity of eACE2 to the RBDs of SARS-CoV-2 variants (Alpha, Beta, and Gamma), SARS-CoV, and hCoV-NL63. Pseudovirus infection assays showed that the SARS-CoV-2 Delta strain (B.1.617.2) displayed a significantly increased infection efficiency in eACE2-expressing HeLa cells. Our results reveal the molecular basis of eACE2 binding to the RBDs of SARS-CoV, SARS-CoV-2, and hCoV-NL63, which provides insights into the potential animal transmission of these ACE2-dependent coronaviruses.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Angiotensin-Converting Enzyme 2 , Animals , HeLa Cells , Horses , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
14.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938839

ABSTRACT

In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target-green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker-were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Coronavirus Papain-Like Proteases , HeLa Cells , Humans , Papain/metabolism , SARS-CoV-2/genetics
15.
Chemosphere ; 306: 135578, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914233

ABSTRACT

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Subject(s)
DNA, Single-Stranded , Doxorubicin , Nanoparticle Drug Delivery System , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Calcium , DNA, Single-Stranded/analysis , Doxorubicin/administration & dosage , HEK293 Cells , HeLa Cells , Humans , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Zinc Oxide
16.
Chem Biol Interact ; 363: 110025, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-1906835

ABSTRACT

In order to discover new dual-active agents, a series of novel Biginelli hybrids (tetrahydropyrimidines) and their ruthenium(II) complexes were synthesized. Newly synthesized compounds were characterized by IR, NMR, and X-ray techniques and investigated for their cytotoxic effect on human cancer cell lines HeLa, LS174, A549, A375, K562 and normal fibroblasts (MRC-5). For further examination of the cytotoxic mechanisms of novel complexes, two of them were chosen for analyzing their effects on the distribution of HeLa cells in the cell cycle phases. The results of the flow cytometry analysis suggest that the proportion of cells in G2/M phase was decreased following the increase of subG1 phase in all treatments. These results confirmed that cells treated with 5b and 5c were induced to undergo apoptotic death. The ruthenium complexes 5a-5d show significant inhibitory potency against SARS-CoV-2 Mpro. Therefore, molecule 5b has significance, while 5e possesses the lowest values of ΔGbind and Ki, which are comparable to cinanserin, and hydroxychloroquine. In addition, achieved results will open a new avenue in drug design for more research on the possible therapeutic applications of dual-active Biginelli-based drugs (anticancer-antiviral). Dual-active drugs based on the hybridization concept "one drug curing two diseases" could be a successful tactic in healing patients who have cancer and the virus SARS-CoV-2 at the same time.


Subject(s)
Antineoplastic Agents , COVID-19 Drug Treatment , Coordination Complexes , Ruthenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , SARS-CoV-2
17.
Pharmacol Res Perspect ; 9(3): e00800, 2021 05.
Article in English | MEDLINE | ID: covidwho-1898944

ABSTRACT

Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50  = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.


Subject(s)
Amides , Anti-Bacterial Agents , Antineoplastic Agents , Antiparasitic Agents , Nitro Compounds , Thiazoles , Amides/chemistry , Amides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Bacterial Proteins/metabolism , Biological Assay , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 9/metabolism , Molecular Docking Simulation , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Thymidylate Synthase/metabolism
18.
Molecules ; 27(11)2022 May 29.
Article in English | MEDLINE | ID: covidwho-1892925

ABSTRACT

Chemical modification of sugars and nucleosides has a long history of producing compounds with improved selectivity and efficacy. In this study, several modified sugars (2-3) and ribonucleoside analogs (4-8) have been synthesized from α-d-glucose in a total of 21 steps. The compounds were tested for peripheral anti-nociceptive characteristics in the acetic acid-induced writhing assay in mice, where compounds 2, 7, and 8 showed a significant reduction in the number of writhes by 56%, 62%, and 63%, respectively. The compounds were also tested for their cytotoxic potential against human HeLa cell line via trypan blue dye exclusion test followed by cell counting kit-8 (CCK-8) assay. Compound 6 demonstrated significant cytotoxic activity with an IC50 value of 54 µg/mL. Molecular docking simulations revealed that compounds 2, 7, and 8 had a comparable binding affinity to cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. Additionally, the bridged nucleoside analogs 7 and 8 potently inhibited adenosine kinase enzyme as well, which indicates an alternate mechanistic pathway behind their anti-nociceptive action. Cytotoxic compound 6 demonstrated strong docking with cancer drug targets human cytidine deaminase, proto-oncogene tyrosine-protein kinase Src, human thymidine kinase 1, human thymidylate synthase, and human adenosine deaminase 2. This is the first ever reporting of the synthesis and analgesic property of compound 8 and the cytotoxic potential of compound 6.


Subject(s)
Antineoplastic Agents , Nucleosides , Analgesics/chemistry , Animals , Antineoplastic Agents/chemistry , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , HeLa Cells , Humans , Mice , Molecular Docking Simulation , Molecular Structure , Nucleosides/pharmacology , Structure-Activity Relationship , Sugars
19.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1892892

ABSTRACT

A major cause of cancer cell resistance to chemotherapeutics is the blocking of apoptosis and induction of autophagy in the context of cell adaptation and survival. Therefore, new compounds are being sought, also among drugs that are commonly used in other therapies. Due to the involvement of histamine in the regulation of processes occurring during the development of many types of cancer, antihistamines are now receiving special attention. Our study concerned the identification of new mechanisms of action of azelastine hydrochloride, used in antiallergic treatment. The study was performed on HeLa cells treated with different concentrations of azelastine (15-90 µM). Cell cycle, level of autophagy (LC3 protein activity) and apoptosis (annexin V assay), activity of caspase 3/7, anti-apoptotic protein of Bcl-2 family, ROS concentration, measurement of mitochondrial membrane potential (Δψm), and level of phosphorylated H2A.X in response to DSB were evaluated by cytometric method. Cellular changes were also demonstrated at the level of transmission electron microscopy and optical and fluorescence microscopy. Lysosomal enzyme activities-cathepsin D and L and cell viability (MTT assay) were assessed spectrophotometrically. Results: Azelastine in concentrations of 15-25 µM induced degradation processes, vacuolization, increase in cathepsin D and L activity, and LC3 protein activation. By increasing ROS, it also caused DNA damage and blocked cells in the S phase of the cell cycle. At the concentrations of 45-90 µM, azelastine clearly promoted apoptosis by activation of caspase 3/7 and inactivation of Bcl-2 protein. Fragmentation of cell nucleus was confirmed by DAPI staining. Changes were also found in the endoplasmic reticulum and mitochondria, whose damage was confirmed by staining with rhodamine 123 and in the MTT test. Azelastine decreased the mitotic index and induced mitotic catastrophe. Studies demonstrated the multidirectional effects of azelastine on HeLa cells, including anti-proliferative, cytotoxic, autophagic, and apoptotic properties, which were the predominant mechanism of death. The revealed novel properties of azelastine may be practically used in anti-cancer therapy in the future.


Subject(s)
Cathepsin D , Uterine Cervical Neoplasms , Apoptosis , Autophagy , Caspase 3/metabolism , Cell Line, Tumor , Female , HeLa Cells , Humans , Phthalazines , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/drug therapy
20.
J Virol ; 96(8): e0012822, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765079

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Furin/metabolism , HeLa Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL