Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS Med ; 18(9): e1003766, 2021 09.
Article in English | MEDLINE | ID: covidwho-1470656

ABSTRACT

BACKGROUND: Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS: Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS: While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.


Subject(s)
Amodiaquine/adverse effects , Antimalarials/adverse effects , Bradycardia/chemically induced , Heart Conduction System/drug effects , Heart Rate/drug effects , Long QT Syndrome/chemically induced , Adolescent , Adult , Bradycardia/diagnosis , Bradycardia/physiopathology , Cardiotoxicity , Child , Child, Preschool , Female , Heart Conduction System/physiopathology , Humans , Infant , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Male , Middle Aged , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Young Adult
2.
Cardiovasc Toxicol ; 21(9): 687-694, 2021 09.
Article in English | MEDLINE | ID: covidwho-1237553

ABSTRACT

Several medicines, including cancer therapies, are known to alter the electrophysiological function of ventricular myocytes resulting in abnormal prolongation and dispersion of ventricular repolarization (quantified by multi-lead QTc measurement). This effect could be amplified by other concomitant factors (e.g., combination with other drugs affecting the QT, and/or electrolyte abnormalities, such as especially hypokalemia, hypomagnesaemia, and hypocalcemia). Usually, this condition results in higher risk of torsade de point and other life-threatening arrhythmias, related to unrecognized unpaired cardiac ventricular repolarization reserve (VRR). Being VRR a dynamic phenomenon, QT prolongation might often not be identified during the 10-s standard 12-lead ECG recording at rest, leaving the patient at increased risk for life-threatening event. We report the case of a 49-year woman, undergoing tamoxifen therapy for breast cancer, which alteration of ventricular repolarization reserve, persisting also after correction of concomitant recurrent hypokalemia, was evidenced only after manual measurements of the corrected QT (QTc) interval from selected intervals of the 12-lead ECG Holter monitoring. This otherwise missed finding was fundamental to drive the discontinuation of tamoxifen, shifting to another "safer" therapeutic option, and to avoid the use of potentially arrhythmogenic antibiotics when treating a bilateral pneumonia in recent COVID-19.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Arrhythmias, Cardiac/diagnosis , Breast Neoplasms/drug therapy , COVID-19/drug therapy , Carcinoma, Intraductal, Noninfiltrating/drug therapy , Electrocardiography , Estrogen Antagonists/adverse effects , Heart Conduction System/drug effects , Tamoxifen/adverse effects , Action Potentials , Anti-Bacterial Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , COVID-19/complications , COVID-19/diagnosis , Drug Substitution , Female , Heart Conduction System/physiopathology , Heart Rate/drug effects , Humans , Middle Aged , Predictive Value of Tests , Risk Assessment , Risk Factors
3.
Circ Arrhythm Electrophysiol ; 13(11): e008937, 2020 11.
Article in English | MEDLINE | ID: covidwho-945067

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2) has resulted in a global pandemic. Hydroxychloroquine±azithromycin have been widely used to treat coronavirus disease 2019 (COVID-19) despite a paucity of evidence regarding efficacy. The incidence of torsade de pointes remains unknown. Widespread use of these medications forced overwhelmed health care systems to search for ways to effectively monitor these patients while simultaneously trying to minimize health care provider exposure and use of personal protective equipment. METHODS: Patients with COVID-19 positive who received hydroxychloroquine±azithromycin across 13 hospitals between March 1 and April 15 were included in this study. A comprehensive search of the electronic medical records was performed using a proprietary python script to identify any mention of QT prolongation, ventricular tachy-arrhythmias and cardiac arrest. RESULTS: The primary outcome of torsade de pointes was observed in 1 (0.015%) out of 6476 hospitalized patients with COVID-19 receiving hydroxychloroquine±azithromycin. Sixty-seven (1.03%) had hydroxychloroquine±azithromycin held or discontinued due to an average QT prolongation of 60.5±40.5 ms from a baseline QTc of 473.7±35.9 ms to a peak QTc of 532.6±31.6 ms. Of these patients, hydroxychloroquine±azithromycin were discontinued in 58 patients (86.6%), while one or more doses of therapy were held in the remaining nine (13.4%). A simplified approach to monitoring for QT prolongation and arrythmia was implemented on April 5. There were no deaths related to the medications with the simplified monitoring approach and health care provider exposure was reduced. CONCLUSIONS: The risk of torsade de pointes is low in hospitalized patients with COVID-19 receiving hydroxychloroquine±azithromycin therapy.


Subject(s)
Antiviral Agents/adverse effects , Azithromycin/adverse effects , COVID-19/drug therapy , Delivery of Health Care , Heart Conduction System/drug effects , Hydroxychloroquine/adverse effects , Torsades de Pointes/chemically induced , Action Potentials/drug effects , Adolescent , Adult , Aged , Antiviral Agents/administration & dosage , Azithromycin/administration & dosage , COVID-19/diagnosis , Cardiotoxicity , Female , Heart Conduction System/physiopathology , Heart Rate/drug effects , Hospitalization , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , New York , Patient Safety , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Torsades de Pointes/diagnosis , Torsades de Pointes/physiopathology , Treatment Outcome , Young Adult
4.
Blood Purif ; 50(3): 402-404, 2021.
Article in English | MEDLINE | ID: covidwho-841323

ABSTRACT

Hydroxychloroquine (HQ) has been used for the treatment of novel coronavirus disease (COVID-19) even though there is no clear evidence for its effectiveness yet. In contrary, HQ has major side effects like QTc prolongation and subsequent development of ventricular arrhythmias. Such side effects may possess additional risks on end-stage renal disease (ESRD) patients who have higher cardiovascular risks than general population. We herein present 2 cases of sudden cardiac death in 2 ESRD patients with COVID-19 for whom a treatment regimen including HQ was preferred. Both patients were clinically stable at the time of arrest. Death could not be attributed to worsening of the COVID-19 since the patients' clinical picture and laboratory values were improving. The cardiac events coincided with the end of routine haemodialysis sessions of both patients. Electrocardiography controls upon admission and on the 24 and 48 h of treatment showed normal QTc intervals. Potential risks contributing to sudden cardiac death during HQ treatment of ESRD patients are discussed.


Subject(s)
COVID-19/drug therapy , Death, Sudden, Cardiac/etiology , Hydroxychloroquine/adverse effects , Renal Dialysis , SARS-CoV-2 , Aged , Aged, 80 and over , Azithromycin/adverse effects , Azithromycin/therapeutic use , COVID-19/complications , COVID-19/diagnosis , Drug Synergism , Drug Therapy, Combination , Fatal Outcome , Female , Heart Conduction System/drug effects , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Magnesium/blood , Male , Potassium/blood , Renal Dialysis/adverse effects
5.
Electromagn Biol Med ; 39(4): 433-436, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-814062

ABSTRACT

To help investigate the relationship between inflammatory and other symptoms of coronavirus and the protein-protein interactions (PPI) that occur between viral proteins and protein molecules of the host cell, I propose that the electrostatic discharge (ESD) exists including corona discharge to lead to ozone gas. I cite evidence in support of this hypothesis. I hope that the proposed will inspire new studies in finding effective treatments and vaccines for individuals with coronavirus disease in 2019. I suggest possible future studies that may lend more credibility to the proposed.


Subject(s)
Betacoronavirus/physiology , Coronavirus/physiology , Models, Biological , Static Electricity , Betacoronavirus/chemistry , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Host Microbial Interactions/physiology , Humans , Hydroxychloroquine/pharmacology , Ozone/metabolism , Ozone/toxicity , Ozone Depletion , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Protein Interaction Domains and Motifs/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology
6.
Clin Transl Sci ; 14(1): 163-169, 2021 01.
Article in English | MEDLINE | ID: covidwho-751768

ABSTRACT

The recent empirical use of hydroxychloroquine (HCQ) in coronavirus disease 2019 (COVID-19) revived the interest in its cardiac toxicity, increasingly sidelined over time. We aimed to assess and compare the profile of cardiac adverse drug reactions (CADRs) associated with HCQ before and during COVID-19. We performed a retrospective comparative observational study using the French Pharmacovigilance network database between 1985 and May 2020 to assess all postmarketing CADRs associated with HCQ notified before COVID-19 in its approved indications for lupus and rheumatoid arthritis (preCOV), and those concerning its empirical use in COVID-19 (COV). Eighty-five CADR in preCOV were compared with 141 CADRs in COV. The most common CADR of preCOV were cardiomyopathies (42.4%) and conduction disorders (28.2%), both statistically more frequent than in COV (P < 0.001). COV notifications significantly highlighted repolarization and ventricular rhythm disorders (78.0%, P < 0.001) as well as sinus bradycardias (14.9%, P = 0.01) as compared with preCOV. Estimated incidence of CADR was significantly higher among patients exposed to off-label use of HCQ in COVID-19 (2.9%) than before COVID-19 in its approved indications (0.01%, P < 0.001). The use of HCQ in COVID-19 sheds a new light on the spectrum of its cardiac toxicity. This fosters the value of a closer monitoring of all patients treated with HCQ, regardless of its indication, and the importance of an update of its summary of product characteristics.


Subject(s)
COVID-19/drug therapy , Cardiotoxicity/etiology , Hydroxychloroquine/adverse effects , SARS-CoV-2 , Adult , Aged , Cardiomyopathies/chemically induced , Female , Heart Conduction System/drug effects , Humans , Male , Middle Aged , Retrospective Studies
7.
Trends Cardiovasc Med ; 30(8): 451-460, 2020 11.
Article in English | MEDLINE | ID: covidwho-713789

ABSTRACT

As the coronavirus 2019 (COVID-19) pandemic marches unrelentingly, more patients with cardiac arrhythmias are emerging due to the effects of the virus on the respiratory and cardiovascular (CV) systems and the systemic inflammation that it incurs, and also as a result of the proarrhythmic effects of COVID-19 pharmacotherapies and other drug interactions and the associated autonomic imbalance that enhance arrhythmogenicity. The most worrisome of all arrhythmogenic mechanisms is the QT prolonging effect of various anti-COVID pharmacotherapies that can lead to polymorphic ventricular tachycardia in the form of torsade des pointes and sudden cardiac death. It is therefore imperative to monitor the QT interval during treatment; however, conventional approaches to such monitoring increase the transmission risk for the staff and strain the health system. Hence, there is dire need for contactless monitoring and telemetry for inpatients, especially those admitted to the intensive care unit, as well as for outpatients needing continued management. In this context, recent technological advances have ushered in a new era in implementing digital health monitoring tools that circumvent these obstacles. All these issues are herein discussed and a large body of recent relevant data are reviewed.


Subject(s)
Antiviral Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/virology , COVID-19/complications , COVID-19/drug therapy , Heart Conduction System/drug effects , Heart Conduction System/virology , Heart Rate/drug effects , SARS-CoV-2/pathogenicity , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , COVID-19/diagnosis , COVID-19/virology , Cardiotoxicity , Drug Interactions , Heart Conduction System/physiopathology , Host-Pathogen Interactions , Humans , Prognosis , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL